
Specifying and compiling Internet
routing protocols

John N. Billings

University of Cambridge
Computer Laboratory

Queens’ College

October 2009

This dissertation is submitted for
the degree of Doctor of Philosophy

Declaration

This dissertation is the result of my own work and includes nothing which is the
outcome of work done in collaboration except where specifically indicated in the text.

This dissertation does not exceed the regulation length of 60 000 words, including tables
and footnotes.

Publications

John N. Billings, Timothy G. Griffin. A model of Internet routing using semi-modules.
In RelMiCS/AKA 11 2009, Doha, Qatar, November 2009.

Type-Safe Distributed Programming for OCaml. John Billings, Peter Sewell, Mark
Shinwell, Rok Strnisa. In Proc. 2006 ACM SIGPLAN Workshop on ML, Portland, Oregon,
September 2006.

Specifying and compiling Internet routing protocols

John N. Billings

Summary

The metarouting approach decomposes routing protocols into their linguistic and al-
gorithmic components. A routing language specifies the form of metrics and policy,
and the results of comparing metrics and applying policy to metrics, whilst a rout-
ing algorithm computes routing solutions to graphs labelled with a routing language.
This dissertation describes a system that allows routing languages to be specified in
a declarative style. These specifications can then be compiled into low-level code
and combined with one of several pre-supplied routing algorithms to produce routing
protocol implementations.

The system contains two types of routing algorithms: offline and online. Offline algo-
rithms are variants of traditional shortest paths algorithms such as Dijkstra’s algorithm,
and allow the computation of routing solutions for static graphs. Online algorithms
are generalised versions of current Internet routing protocols, obtained by removing
the implicit routing languages and replacing them with routing interfaces. This latter
type of algorithm allows the generation of fully-fledged Internet routing protocols.

Traditionally, routing protocols are monolithically specified and implemented. Specifi-
cations may reach hundreds of pages of informal prose, and implementations usually
contain tens of thousands of lines of source code, often with serious errors. The
metarouting approach has several significant advantages. Firstly, by separately spec-
ifying routing languages and reusing existing routing algorithms, it allows the rapid
development of new routing protocols. Secondly, the system is able to determine
whether a particular combination of routing language and algorithm is well-behaved.
This involves the automatic inference of mathematical properties of routing languages.
Finally, routing language specifications can be compiled into efficient code with mini-
mal user intervention. In some cases the compiler is able to exploit inferred mathemat-
ical properties.

This dissertation concludes with an algebraic model of protocol interaction that is
termed simple route redistribution. This model demonstrates how to avoid the safety
problems that are associated with the traditional interaction mechanisms of route re-
distribution and administrative distance. Fundamental to simple route redistribution is a
clear distinction between routing and forwarding. The model also captures the separa-
tion of locators and identifiers found in recent proposals for a new Internet architecture.
It is hoped that this model will form a basis for incorporating practical methods for
protocol interaction into the metarouting system.

Acknowledgements

I am very grateful to Tim Griffin, my supervisor, for his discussions and encouragement.
This thesis would not have been possible without him.

I also thank the members of the metarouting research group: Md. Abdul Alim, Alex
Gurney, Vilius Naudziunas, Balraj Singh and Philip Taylor. These people have made
my time at the Computer Laboratory a much richer experience.

Finally, I thank Sarrita for her endless support and patience.

Contents

1 Introduction 1

1.1 Internet routing . 3

1.2 The case for new routing protocols . 8

1.3 The case for new glue logic . 9

1.4 Designing routing protocols is difficult . 10

1.5 Implementing routing protocols is difficult 15

1.6 Contributions . 17

2 Background and related work 19

2.1 A brief history of the Internet . 19

2.2 Domain-specific languages for networking 22

2.3 Extending the control plane . 26

2.4 Extending the data plane . 28

2.5 Modularising network protocols . 29

2.6 Algebraic routing . 30

2.7 Algorithms . 39

3 System architecture 44

3.1 Design overview . 44

3.2 Routing interfaces . 46

3.3 Compilation . 48

3.4 Routing algorithms . 50

3.5 User interfaces . 53

vi

4 Semantic domain 57

4.1 Overview . 57

4.2 Basic definitions . 58

4.3 Semigroups . 60

4.4 Bisemigroups . 63

4.5 Intermediate language . 65

5 RAML1: Mini metalanguage 72

5.1 Example . 72

5.2 Metalanguage . 74

5.3 Translation into IRL1 . 79

6 Compilation 83

6.1 Overview . 83

6.2 Compilation . 87

7 RAML2: Extended metalanguage 93

7.1 Examples . 93

7.2 Semantic domain . 97

7.3 Metalanguage . 103

8 Performance 107

8.1 Optimisations . 107

8.2 Methodology . 113

8.3 Results . 118

8.4 Discussion . 127

9 Deriving forwarding paths from routing solutions 129

9.1 Introduction . 129

9.2 Attaching destinations . 131

9.3 Generalised attachment . 132

9.4 Modelling OSPF . 137

9.5 The non-distributive case . 139

vii

10 Simple route redistribution 141

10.1 Introduction . 141

10.2 Simple route redistribution . 142

10.3 Relation to routing scalability problem . 144

11 Conclusions 149

11.1 Summary . 149

11.2 Future work . 151

viii

C 1

Introduction

Consider sending a packet of data across the Internet. Prior to reaching its destination,
the packet typically traverses a number of intermediate computers, known as routers.
Each such router makes a local forwarding decision. That is, the router examines the
packet, and based upon information contained within the packet, decides where it
should next be sent. In most cases, the packet reaches its destination within perhaps a
dozen or two of such hops [1]. The task of choosing and configuring these forwarding
paths is termed routing, and it is with regard to this process that this dissertation is
primarily concerned.

Routing on the Internet is complicated by the fact that it is a ‘network of networks’, with
no central authority responsible for ensuring that paths are configured in a consistent
manner. Moreover, the network topology is constantly changing: links are continually
being added, removed, or even failing. Given this environment, how is it that the
vast majority of packets successfully reach their intended recipients? The trick is to
use a distributed approach to routing: each router constantly exchanges reachability
information with its neighbouring routers, and in this manner builds up a map of the
network. The exchange of reachability information is mediated by a routing protocol.
Each router runs a program, called a routing daemon, that ‘speaks’ the routing protocol
with neighbouring routing daemons. We further describe Internet routing, including
the different kinds of routing protocols, in Section 1.1.

The Internet has been developed in an environment of ‘rough consensus and running
code’ [2]. Whilst this approach has perhaps been pivotal to the success of the Internet,
it has led to an assorted collection of monolithic routing protocols, each with its own
quirks and peculiarities. This has several deleterious consequences.

• It is difficult to reappropriate components from routing protocol implementations.
New routing protocols must often be built ‘from scratch’, with a large investment
of labour. Therefore, network operators are instead coping with existing routing
protocols and using them in situations for which they were never designed (§ 1.2).
This causes unsafe behaviour, including routing oscillations and persistent loops.

1

1. Introduction

• The mechanisms for allowing different routing protocols to interoperate are
poorly documented and extremely primitive (§ 1.3). Again, this introduces the
potential for unsafe behaviour

• Even within just a single protocol, it is possible to obtain seemingly-incorrect
behaviour such as unintended paths or indeed unsafe behaviour. Many of these
anomalies can be attributed to the unanticipated interaction of protocol features
(§ 1.4).

• Routing daemons often contain implementation errors that cause them to crash,
and can even lead to security vulnerabilities. This is perhaps not surprising given
that protocol specifications are often several hundred pages of informal prose,
with implementations containing tens of thousands of lines of source code (§ 1.5).

In light of the above, one might naturally conclude that the creation of a new routing
protocol is a herculean task. How then can we help network operators and researchers
to rapidly develop new routing protocols? One approach might be facilitate the adap-
tation of existing protocols. This is the approach taken by developers of the XORP
routing platform. They have provided modular implementations of current routing
protocols so that they can be more easily accommodated to new purposes. Whilst this
is an interesting approach, the implementation of new routing protocols still remains
a significant undertaking. Furthermore, there is no way of easily understanding the
behaviour of protocols written using the XORP routing platform. We discuss the XORP
architecture in more depth in Section 2.3.2.

In this thesis we adopt a radically different approach. We develop the seminal metarout-
ing idea [3] to create a new architecture for the specification and compilation of routing
protocols. Metarouting proposes that routing protocols be constructed by combining
languages with algorithms. This separation of concerns appears pivotal to understand-
ing the resulting routing protocols. The underlying theory of metarouting is based upon
an algebraic approach to solving path problems [4, 5]. This theory has been advanced
largely independently of the Internet engineering efforts, and instead is rooted in the
more mathematical disciplines such as Operations Research. Using the metarouting
approach, we create a high-level language for specifying routing protocols. Proto-
cols defined in this way can then be automatically checked for correctness and compiled
into efficient implementations. We introduce the algebraic approach in more detail in
Section 2.6.

We now present our thesis that we argue for in the remainder of this dissertation:

Using the theory of algebraic routing, routing protocols can be specified at
a high level, automatically checked for correctness and then compiled into
efficient implementations. The resulting protocols are easier to understand
and require significantly less implementation effort.

2

1. Introduction

a

b

c123.45.6.0/24

123.45.7.0/24

w

x

y

Figure 1.1: Example networks. Routers are drawn as circles and hosts as squares.
Networks are depicted as shaded regions with associated prefixes.

The remainder of this chapter elaborates upon the motivations for this thesis. We
commence with a brief introduction to Internet routing (§ 1.1). We then discuss how
existing routing protocols are being used in situations for which they were never de-
signed (§ 1.2), before describing the absence of mechanisms for safe protocol interaction
(§ 1.3). Next we outline how protocol features can interact in unpredictable ways (§ 1.4)
and examine the difficulties in implementing routing protocols (§ 1.5). Finally, we con-
clude with a summary of the contributions made by this dissertation (§ 1.6).

1.1 Internet routing

1.1.1 Routing and forwarding

In this section we describe the difference between routing and forwarding. This forms
the basis for describing the different kinds of routing protocols. We illustrate the
concepts using the example networks in Figure 1.1. Here there are two networks, with
prefixes 123.45.6.0/24 and 123.45.7.0/24. The first network contains two hosts, w
and x, whilst the second network contains just a single host, y. There are also three
routers, a, b and c. We note that a prefix in fact denotes a set of addresses [6]; we would
expect the hosts in each network to be assigned addresses from within the associated
network prefix. To simplify the presentation, we will assume that the names of hosts,
such as w, are synonymous with their addresses.

Each routing daemon contains a set of routes stored in a data-structure known as a
Routing Information Base (RIB). This is also informally known as a routing table. Routes
result from exchanging reachability information with adjacent routers. We term this a

3

1. Introduction

control plane process. In Figure 1.1, we would expect routers a, b and c to be running
a routing protocol in order to exchange reachability information. A route abstractly
comprises a triple (prefix, metric, next-hop), where next-hop is the address of the router
to which traffic destined for prefix should be addressed, and metric is the cost of the
associated path. Metrics are used by routing protocols to select between alternative
routes to the same destination. The type of metric is dependent upon the particular
routing protocol. Returning to Figure 1.1, router b might have a RIB containing the
following entries:

Prefix Metric Next-hop
123.45.6.0/24 m1 a
123.45.7.0/24 m2 c

A router may be running several different routing protocols. The routes from each RIB
are combined into a single data-structure known as a Forwarding Information Base (FIB)
or forwarding table. The FIB controls the forwarding (or data plane) behaviour of the
router. In the case of a router running just a single protocol, the FIB and the RIB contain
similar information. Upon receipt of a packet of data to some address d, the router
performs a process known as longest prefix match whereby it locates the most specific
route in the FIB for that address. The data is then forwarded to the corresponding
next-hop router (or directly to the destination, if it is located within the same network
as the router).

Again returning to Figure 1.1, suppose that a packet of data arrives at b with a desti-
nation address of x. The longest-prefix match for that address is 123.45.7.0/24, and
hence the packet is forwarded to a (and then onto x).

1.1.2 Autonomous systems

Recall that the Internet comprises many individual networks. Networks can be grouped
into autonomous systems (ASes), where each network within a given autonomous system
is under the control of the same administrative entity. Figure 1.2 illustrates the concepts
of autonomous systems and networks. Here there are two ASes, AS1234 and AS5678.
The first AS comprises the networks from Figure 1.1, whilst the second AS contains
just the single network 234.56.8.0/24. In practice, ASes often contain many more
networks [7].

There are two different types of Internet routing protocols. An interior gateway protocol
(IGP) is used for routing within an AS, whilst an exterior gateway protocol (EGP) is used
for routing between ASes. Each AS is free to choose its own IGP, of which there are
four in common use. The choice of IGP requires no coordination between ASes. We
emphasise this point, because it means that we are able to develop new IGPs in the

4

1. Introduction

a

b

c

AS1234

AS5678

123.45.6.0/24

123.45.7.0/24

234.56.8.0/24

d

e f

w

x

y
z

Figure 1.2: Example of two Autonomous Systems with constituent networks. Au-
tonomous systems AS1234 and AS5678 are on the left and right, respectively.

context of a single AS and without requiring changes to the rest of the Internet routing
infrastructure.

In contrast to the IGPs, there is only a single EGP, known as the Border Gateway
Protocol (BGP) [8, 9]. The standardisation upon a single EGP for the whole of the
Internet brings a large interoperability benefit for each AS. Returning to the example in
Figure 1.2, the routing between the two ASes (i.e. between router pairs (b, d) and (c, e))
would be accomplished using BGP. Changing BGP would necessarily be a more long
term goal, and therefore this is not the main focus of the dissertation.

1.1.3 Routing within autonomous systems

There are two main kinds of IGPs: link-state/Dijkstra and distance vector. A link-state
routing protocol uses some underlying mechanism to distribute topology information
between all routers within an AS. Each router can then run its own local routing
algorithm, such as Dijkstra’s algorithm [10] to compute paths to each destination prefix.
The Open Shortest Paths First (OSPF) [11] and Intermediate System to Intermediate
System (IS-IS) [12] routing protocols are examples of link-state protocols. Both of these
protocols also contain mechanisms for further dividing an autonomous system into
smaller routing domains, known as areas. This is necessary for larger networks due to
scalability costs associated with topology distribution mechanisms.

A vectoring routing protocol instead sends summaries associating each network address
with a cost. Both the Routing Information Protocol (RIP) [13] and the proprietary En-
hanced Interior Gateway Routing Protocol (EIGRP) [14] are examples of distance vector
routing protocols. Distance vector protocols can form temporary routing loops during

5

1. Introduction

reconvergence (i.e. after a topology change) due to the presence of ‘stale’ information.
EIGRP contains features from the Diffusing Update routing Algorithm (DUAL) [15] for
coordinating routing changes in order to reduce such anomalies.

1.1.4 Routing between autonomous systems

Routing between ASes is accomplished using the Border Gateway Protocol. BGP is a
mature protocol; the most recent recent version of BGP, BGP-4, was introduced in 1995.
In common with RIP and EIGRP, BGP is a vectoring protocol.

There are two variants of BGP: external BGP (eBGP) and internal BGP (iBGP). eBGP is
the ‘standard’ BGP, and is used for intra-AS, whereas iBGP is used for the distribution
of eBGP-learnt routes within an AS. The use of iBGP means that external routes do
not have to be redistributed into the IGP of an AS. Unless otherwise noted, we usually
mean eBGP when we write BGP.

The BGP metric type comprises sets of attributes [8, 16]. The most significant attributes
are as follows [16]:

Local preference This attribute is an integer value that denotes the per-router degree of
preference for a route. Local preference values are only communicated internally
to an AS, in iBGP-distributed routes.

AS path The AS path attribute comprises lists of AS numbers, denoting the ASes
through which the route has been propagated. The AS path both prevents routing
loops and is also used to compute a form of path length.

Next hop The next-hop attribute corresponds to the address of the router in the adja-
cent AS to which traffic for the associated prefix should be sent.

Multi exit discriminator This attribute, abbreviated to MED, is used to influence the
degree of preference for a route between ASes. We further detail the MED attribute
in Section 1.4.2.

Communities These are integer tags, whose meaning is configurable on a per-AS basis.

When a BGP router has several routes to the same prefix, it selects a single, ‘best’ route
using the route selection process. This compares routes, attribute by attribute. Only if
there is a ‘tie’ in the current attribute does the process move onto the next attribute.
This form of comparison amounts to a lexicographic choice [17]. The order in which
attributes are compared is as follows [16]:

1. User-configured policy. This stage may be influenced by communities.

6

1. Introduction

2. Local preference; higher values are preferred.

3. AS path; shorter paths are preferred.

4. Multi-exit discriminator; lower values are preferred.

5. IGP distance to next-hop; lower values are preferred. This stage only applies to
iBGP-learnt routes.

6. eBGP identifier; lower values are preferred. The BGP identifier corresponds to an
IP address of the next-hop router. This stage only applies to eBGP-learnt routes.

7. iBGP identifier; lower values are preferred. This stage only applies to iBGP-learnt
routes.

This section provides some insight into the rich policy that is possible using the BGP
policy language. This is in marked contrast to the standard IGPs, for which metrics often
only comprise a single integer value. The expressivity of BGP policy is necessary both
for traffic engineering and also for implementing the complicated commercial contracts
that govern the flow of traffic between ASes. However, as we show in Section 1.4, this
degree of expressivity also introduces scope for unintended feature interaction. We
now describe the different kinds of relationships that occur between ASes.

1.1.5 Economic relationships between autonomous systems

The economic relation between pairs of ASes can normally be categorised as being
‘customer-provider’ or ‘peer-peer’ [18]. In the former, the customer pays for the
provider to carry the traffic of the customer. One example of this type of relation
is found between commercial traffic carriers of unequal size. Here the smaller carrier
pays the larger for transit facilities, and hence is the customer. A second, more com-
mon example occurs between an edge network, such as that found within a school or
business, and an Internet Service Provider (ISP). Again, the edge network pays money
to the ISP, and hence is the customer. In contrast, peer-peer relationships often indicate
more equal roles between participating ASes. In the case of two carriers of equal size,
this type of arrangement can be equally advantageous to both parties because a similar
volume of traffic is exchanged in both directions. Therefore there is no exchange of
money.

The type of commercial relation between a pair of adjacent ASes is often used to
influence the BGP route selection process for routes learnt from each AS. Suppose that
an AS has three routes to a prefix, occurring via a customer, a peer and a provider.
Normally, the AS prefers to forward traffic using the customer route because such
routes are a source of revenue. The next most preferred route is the peer route. These

7

1. Introduction

routes are not a source of revenue, but also they do not require the AS to spend money
itself. Finally, the least preferred route is the provider route. Here, the AS must pay
the provider to forward traffic, and therefore it is desirable to minimise the volume of
traffic sent over such routes.

1.2 The case for new routing protocols

1.2.1 BGP as an IGP

Many of the large ASes comprise geographically disparate networks, with some even
spanning multiple continents. Current IGPs are ill-suited to such environments. Firstly,
they exhibit poor scalability properties over large networks, especially where there are
a large number of prefixes; it is for this latter reason that iBGP is used to distribute
external routes into an AS. Secondly, current IGPs all compute variants of ‘shortest
paths’, and have few facilities for administrative delegation. Instead, configuration
must be centrally coordinated to ensure a consistent routing policy over an AS; altering
a link weight in one part of an AS may have large effects on traffic flows in the rest of
the AS. Such centralised control again does not scale, and may prove to be extremely
challenging in larger ASes.

One solution has been to adopt eBGP or iBGP as an IGP, even though BGP was never
designed for such purposes. Chapter 3 of [19] and Chapter 5 of [20] both provide
advice on how to configure BGP for use as an IGP. One advantage of BGP is that it
has much better scalability properties than current IGPs, although at the expense of
greater convergence times. The protocol carries in excess of 300,000 prefixes on the
wider Internet [1]. It also contains facilities for aggregation, whereby multiple prefixes
are summarised under a single prefix. A second advantage of BGP is that it permits
a large degree of hierarchical control over paths (although traffic engineering may
still be problematic [21]). This allows individual ASes to be divided into multiple
administrative regions, with local policy control delegated to each region. These ASes
may come to resemble small internets in their own right.

There are also significant disadvantages with using BGP as an IGP. If the iBGP variant
is used, then it is possible to obtain routing loops. As [19] ominously states, “the
routing decision at every point in the iBGP cloud must be the same in order to prevent
routing information loops”. Such risks may appear to be an acceptable trade-off for the
increased administrative control. However, there is also the opportunity to develop
new BGP-like IGPs that do not have such drawbacks. This is one of the longer-term
goals of the research presented in this dissertation.

8

1. Introduction

a

b

c

d

e

RIP OSPF

Figure 1.3: Example of RIP and OSPF routing instances. Shaded areas denote routing
instances and circles denote routers. Neither routing instance contains reachability
information from the other e.g. a cannot reach d. This problem can be addressed by
using route redistribution at b and c to inject reachability information between instances.

1.2.2 Routing research

There is also broad scope for the development of new routing protocols in the con-
text of network research; evaluation of proposed routing protocols cannot be entirely
conducted under simulation. Instead, it is necessary to build implementations to
empirically determine their properties. The difficulty is that building a new routing
protocol requires a large investment of time and effort. Currently, the XORP platform
may present one of the easier avenues for implementation. [22] references an example
of a research group adding support for a wireless routing protocol to XORP. Turning
to BGP, [23] describes a proposed replacement for BGP called the Hybrid Link-state
and Path-vector protocol (HLP). This new protocol has ‘vastly better scalability, isola-
tion and convergence properties’ than BGP. Again, the authors reference a prototype
implementation built using XORP. The system presented in this thesis works towards
further reducing the cost of implementation by allowing the compilation of routing
protocols from high-level specifications.

1.3 The case for new glue logic

In this section we describe the current mechanisms for protocol interactions. We term
this the ‘glue logic’, after [24]. Consider the situation in Figure 1.3. Here there are two
routing instances [25, 26]. A routing instance comprises a connected collection of routing
daemons running a given routing protocol; in the example there is a RIP instance and an
OSPF instance. Routers b and c both run RIP and OSPF daemons whilst the remainder
of the routers only run a single daemon. Routing instances do not inter-operate by
default. Therefore router a cannot reach router d, for example.

The single mechanism for enabling interoperation between routing instances is route

9

1. Introduction

redistribution. This is enabled on individual routers, and locally injects specified routes
from the RIB of one routing daemon in the other. Returning to Figure 1.3, route
redistribution could be enabled on routers b and c to inject routes from the RIP instance
into the OSPF instance and vice versa – this is known as mutual redistribution. This
would allow router a to reach d.

Note that it could be the case that two routing daemons on the same router contain
routes to a common prefix. Indeed, mutual redistribution makes this situation more
likely. For example, b could directly learn a route to d via the OSPF instance and also
from a RIP route that has been redistributed from the OSPF instance by c. The FIB
on each router selects between such routes using administrative distance (AD). This is a
configurable value that is assigned to the routes from each routing daemon. The route
with the lowest AD value is installed into the FIB.

Route redistribution is a valuable tool for connecting distinct IGP instances. For exam-
ple, two companies might merge. Instead of reconfiguring the IGPs on each network,
inter-connectivity could be established by using route redistribution. Route redistri-
bution can also increase network reliability by eliminating dependence upon a single
protocol. For example, should link (b, d) fail in Figure 1.3, then b could still reach d via
the RIP instance. This is known as domain backup [27].

The problem with the route redistribution and administrative distance mechanisms is
that they can cause forwarding loops and routing oscillations [24, 27, 28, 29]. Moreover,
detecting where a particular configuration is susceptible to unsafe behaviour is NP-
hard [28]. A set of configuration guidelines have been proposed to help prevent unsafe
behaviour [27]. However, this does not address the fundamental problem: it should
not be possible to configure routing protocols in an unsafe manner. Here we see the
need for improved mechanisms for low-level protocol interoperation.

1.4 Designing routing protocols is difficult

When designing a new routing protocol, it is of the utmost importance that the be-
haviour of the specified protocol is well understood. Unfortunately, it is all too common
to see widely-deployed routing protocols exhibit apparently contradictory behaviour
due to the unanticipated interaction of features. In this section we give two examples
of such behaviour. Both examples involve the BGP protocol.

1.4.1 Wedgies

Relatively recently, it was discovered that BGP can exhibit unintended non-deterministic
behaviour [30]. This can lead to the existence of multiple stable forwarding solutions,

10

1. Introduction

AS1

AS2

AS3 AS4
Peer Peer

Provider

Customer

Provider

Customer

Provider

Customer

Backup
service

Primary
service

(a) Before

AS1

AS2

AS3 AS4
Peer Peer

Provider

Customer

Provider

Customer

Provider

Customer

Backup
service

Primary
service

(b) During

AS1

AS2

AS3 AS4
Peer Peer

Provider

Customer

Provider

Customer

Provider

Customer

Backup
service

Primary
service

(c) After

Figure 1.4: Example of a BGP wedgie

even though just a single such state is intended. Moreover, it is possible for the protocol
to become ‘wedged’ in one of these unintended states, giving this problem its name.
Coordinated operator intervention is required to diagnose the problem and restore the
intended forwarding paths.

Figure 1.4, from [30], illustrates a BGP wedgie. In this example, there are four au-
tonomous systems: AS1 – AS4. AS1 has two links to two providers: a primary link via
AS4 and a backup link via AS2. The intention is that the backup link is only ever used
if the primary link fails. This setup is commonly used in edge networks to increase
reliability. There is also an additional autonomous system, AS3, that is both a provider
to AS2 and a peer of AS4.

Providing that AS1 first announces its routes along its primary link then we have the
intended situation, where no traffic flows over the backup link. This configuration is
shown in Figure 1.4(a). If the primary link between AS1 and AS4 fails, then traffic
switches to the backup link, again as intended. This second configuration is shown
in Figure 1.4(b). The difficulty occurs when the primary link is restored. AS4 will
announce the route ‘AS4, AS1’ to AS3. However, since AS3 prefers customer routes to

11

1. Introduction

peer routes, as is the usual policy in BGP, then AS3 will continue to prefer the route
‘AS3, AS2, AS1’. Furthermore, AS3 will not announce the primary route to AS2 because
AS3 is itself not using that route. We therefore have the situation whereby AS3 and
AS2 continue to route traffic over the backup link. This configuration is shown in
Figure 1.4(c).

The network has therefore become ‘wedged’ in an unintended, but stable, configura-
tion. Furthermore, AS1 cannot diagnose the problem without contacting AS3. From
the view of AS1, the primary link has been restored, yet for seemingly inexplicable
reasons a significant amount of incoming traffic remains on the backup link. The only
way to restore the network to the correct configuration, shown in Figure 1.4(a), is for
AS1 to temporarily bring down its session with AS2. This will cause all traffic to be
routed over the primary link. Any traffic in transit may be lost whilst the network
reconverges.

1.4.2 MED oscillations

Another example of routing policy that can have undesirable effects is the BGP multi-
exit discriminator (MED) facility. Consider a router within an AS that is forwarding
traffic to a host outside of that AS. Usually, BGP will be configured so that the router
will use the IGP to choose a path to the closest border router (or egress node) from the
AS. This behaviour is known as ‘hot-potato’ routing because it causes ASes to hand off

traffic as ‘quickly’ as possible. However, in some situations, it may be desirable for an
AS to carry traffic for as long as possible on its own network before passing it onto a
neighbour’s network. This behaviour is known as ‘cold-potato’ routing.

One situation where cold-potato routing might be used is when a customer has con-
strained network resources. If the customer has multiple connections to their provider,
then it might be possible for the customer to reduce resource usage on their own
network by making traffic travel a greater distance on the provider’s network. For
example, consider the situation in Figure 1.5, which is taken from [31]. In Figure 1.5(a),
the provider hands-off return traffic as quickly as possible, forcing the customer to carry
the traffic a relatively long distance across their own network. In Figure 1.5(b), the cus-
tomer uses the MED attribute to force the return traffic to choose an alternative egress
point from the provider’s network. The effect is that the traffic travels a greater distance
on the provider’s network and a lesser distance on the customer’s own network.

A significant problem with MED is that it violates BGP’s independent ranking ‘rule’.
That is, with MED enabled, the degree of preference for a route can depend upon the
existence of other routes. A new route can prevent the current best route from being
chosen, and not be chosen itself. For example, consider the situation illustrated in
Figure1.6. In Figure1.6(a) there are two routes, r and s, to some common destination.

12

1. Introduction

a

LA b

NYC c

Customer

d

e f

Provider

g

Server

2

10

15

2

(a) Without MED, traffic always chooses closest egress point – ‘hot-
potato’ routing. This can lead to asymmetric forwarding paths.

a

LA b

NYC c

Customer

d

e f

Provider

g

Server

2

15

(2)

10

2(10)

(b) With MED, the customer directs the provider to carry inbound
traffic further on the provider’s own network – ‘cold-potato’ rout-
ing. Symmetric forwarding paths are restored.

Figure 1.5: Motivating example for Multi-Exit Discriminator (MED) attribute. Cus-
tomer uses MED to direct their provider to carry inbound traffic on the provider’s
own network, minimising usage of the customer’s own network. Bold arcs are used
for forwarding traffic. Inbound MED values are parenthesised, with lower values
preferred.

Name ASN MED IGP Selected
r AS1 10
s AS2 2 5 *

(a) Routes r and s are from different ASes and are
therefore compared using IGP distances only.

Name ASN MED IGP Selected
r AS1 10 *
s AS2 2 5
t AS2 1 15

(b) Routes s and t are from the same AS and are
therefore compared first using MED values.

Figure 1.6: Example of route selection in the presence of the MED attribute. Routes
from the same AS are compared first, with priority given to the MED attribute and then
the IGP distance. The winning route(s) from each AS are then compared using IGP
distances only.

13

1. Introduction

a

b

c

d

e

AS1
AS2

AS3

AS4
1

2

1

4

(1)

(0)

Figure 1.7: Example network configuration that is subject to a route oscillation caused
by the MED attribute.

Suppose that r and s originate from different ASes. MED values are not compared
between routes from different ASes and therefore route selection is purely based upon
IGP distance. Hence s is selected due to its lower IGP distance.

Now suppose that AS2 originates a second route, t, illustrated in Figure1.6(b). Com-
pared to the existing route from AS2, s, this new route has a lower (more preferred)
MED value and a larger IGP distance. Since MED values are compared prior to IGP
distances (but only between routes from the same AS), t is preferred to s. Now when t
is compared to r, using the IGP attribute, r is selected. The introduction of t has caused
the relative preference between r and s to become inverted.

This violation of BGP’s independent ranking rule complicates the route selection pro-
cess, potentially leading to operator error. Without MED, it is sufficient to compare each
route with the current best route, keeping the new route if it is better than the current
one. This amounts to ordering the routes, and then choosing the best. However, with
MED the ordering of routes is affected by the presence of other routes, and hence this
route selection algorithm is no longer sufficient.

There is also a more serious problem with MED: it can also introduce route oscillations,
whereby the preferred route continually changes [32]. Oscillations are undesirable
because they can cause datagrams to be lost. Furthermore, the continual routing
updates consume network resources. Note that unsafe behaviour in BGP is also possible
without using the MED attribute [33, 34].

Figure 1.7 illustrates a route oscillation. This example and the following argument are
taken from [31, 35]. Routers a and b are BGP route reflectors. That is, they redistribute
routes between the client routers c, d and e. Let rc, rd and re be routes to AS4 via c, d
and e respectively. Consider which route is chosen by a to reach AS4. Assuming that
a always learns of rc and rd, then there are two cases to consider. In the first case, a
additionally learns of re and therefore chooses rc due to a combination of MED values
and IGP distances. However, for a to learn of re requires b to choose re. This is a
contradiction, because b would learn of rc and re, and hence would select rc due to IGP

14

1. Introduction

distances. In the second case, a does not learn of re and therefore chooses rd due to IGP
distances. However, for a not to learn of re requires b to select rc over re. Again, this is
a contradiction because b would learn of rd from a and hence would select re due to its
lower MED value.

We see that there is no stable solution. The practical implication is that the network
configuration would continually oscillate, with a and b perpetually exchanging routing
updates. This example illustrates how an apparently minor addition to a routing
protocol can have unforeseen and indeed undesirable consequences.

1.5 Implementing routing protocols is difficult

Suppose that we have a routing protocol design that satisfies a high-level specification.
There still remains a significant challenge in correctly implementing the specification.
Errors made during implementation can lead to protocols that exhibit unexpected
behaviour, such as selected routes not actually being used to forward traffic, or daemons
that crash when presented with particular inputs. The end-result is a decrease in
network reliability.

Interesting examples of protocol implementation errors can be found in the Quagga [36]
BGP release notes. Note that Quagga contains probably the oldest open-source imple-
mentation of BGP, having supported the protocol for the past decade, and therefore
we might hope that most bugs would have been discovered. Furthermore, there are
numerous reports of the Quagga BGP daemon being considered sufficiently stable for
use within smaller networks. The 0.99.10 version of Quagga, released on 11/06/2008,
includes the following bug-fixes:

[bgpd] Bug #419: partial aspath-limit incorrectly causes session reset

[bgpd] Fix crash on startup if compiled IPv4-only

[bgpd] Fix number of DoS security issues, restricted to configured peers.

[bgpd] Small fix for crash if ’listenon’ argument is not given

[bgpd] Fix typo, which prevented advertisement of MP (non-IPv4) prefixes

The first bug appears to cause a session reset between routers if the AS path attribute
exceeds a particular length. The next three bugs can each cause the BGP routing
daemon to crash. The last bug can cause multi-protocol prefixes not to be advertised.
Each of these bugs will lead to a loss of connectively for any hosts using routes that
have been advertised by the affected routers. Examining the release notes from other
Quagga versions, it is clear that such bugs are relatively common.

There are also several documented occasions in which routing protocol implementa-
tion errors have caused large-scale loss of Internet connectivity. In February 2009, an
erroneous BGP announcement containing an AS path with 252 entries triggered a bug

15

1. Introduction

in the Cisco BGP implementation [37]. As the BGP route propagated across the Inter-
net and the AS path length reached 255, it caused the affected BGP daemons to crash.
During this event, the connectivity to an estimated 4.8% (12,920) of all prefixes either
changed or failed [38]. This is an approximate ten-fold increase in the standard level
of prefix instability. In May 2009, a routing update with a particular 4-byte AS number
triggered a bug in older versions of the Quagga BGP implementation, including ver-
sion 0.99.10 [39]. Again, the routing update caused the affected BGP daemons to crash,
leading to a loss of connectivity for over 1000 prefixes.

One high-level source of errors can be attributed to the degree of complexity in protocol
specifications and implementations. Again returning to BGP, we see that the plain
BGP-4 specification [9] runs to one hundred and four pages, much of which is informal
prose with potential scope for interpretation error. This relatively large specification
translates to relatively large code-bases. For example, we list the number of lines of
code in recent versions of three open-source BGP implementations:

Daemon Version Lines of code Language
OpenBGPD [40] 4.4.1 20,140 C
Quagga BGP [36] 0.99.12 55,276 C
XORP BGP [22] 1.6 30,721 C++

We see that none is particularly small, with Quagga exceeding fifty-five thousand lines
of code. Inevitably, larger code-bases are more difficult to reason about, and hence
have greater scope for implementation error.

A confounding source of implementation errors involves the kind of code required to
implement a routing protocol. A routing daemon contains interfaces to at least three
different domains, each with its own associated language and semantics. Firstly, there
is the administrative interface which is used to configure the router. Secondly there is
a network interface which is used to communicate routing updates between adjacent
routing daemons. Finally there is the forwarding information base interface which
is used to add and remove routes from the host’s forwarding table. Each of these
interfaces can modify a large amount of internal state, such as routing tables, network
interfaces and policy. Implementation errors can introduce inconsistencies between
these different kinds of state. There is also the associated difficulty that each of these
interfaces can be accessed at the same time, introducing scope for concurrency errors.

We therefore see that the task of implementing a new routing protocol is a significant
undertaking. Furthermore, the resulting implementation is likely to contain errors
which compromise the reliability of the router. Seen in this light, it is not surprising
that new routing protocols are rarely developed.

16

1. Introduction

1.6 Contributions

The main contribution of this dissertation is to demonstrate the feasibility of defining
routing protocols in terms of their linguistic and algorithmic components. This con-
trasts with the current practice of monolithically specifying and implementing protocols.
We show that there are multiple benefits from our new approach. Firstly, the routing
language component is amenable to automatic verification, eliminating a large class
of errors that may be found in current protocol designs. Secondly, we show the fea-
sibility of abstracting current protocol implementations to obtain generic, well-tested
algorithms. Finally, we demonstrate that the algebraic properties that are automatically
determined during routing language verification can be used to produce more efficient
protocol implementations.

The secondary contribution of this thesis is an algebraic model of protocol inter-
operation. The disadvantage of current algebraic models is that they are only applicable
to single protocols, whereas our approach demonstrates how to model the behaviour
of multiple protocols. Whilst our model is rather abstract, it is a promising approach to
this difficult problem. Our model also demonstrates an interesting new use of algebraic
structures called semi-modules.

The specific contributions of this thesis are as follows:

Routing algebra metalanguage (RAML) We have defined an algebraic, domain-specific
language for the specification of routing languages (that is, a meta-language). This
language is capable of specifying many of the idioms found in current routing
protocols, such as lexicographic choice and zoned routing. This language is based
upon an earlier, less expressive version found in [3], and contains features from
[17].

Library of routing algorithms We have generalised a number of open-source routing
protocol implementations from the Quagga routing suite [36] to obtain generic
routing algorithms. These can be combined with compiled RAML specifications
to produce new protocol implementations. We have also defined a generic routing
interface between routing algorithms and compiled code. This work has been done
in collaboration with Philip Taylor and Md. Abdul Alim.

Compiler architecture We have designed and implemented a compiler architecture
from compiling RAML specifications to executable code. This includes a frame-
work for the automatic derivation of algebraic properties and an intermediate
routing language (IRL) for compactly specifying the semantics of RAML specifi-
cations. We demonstrate how to embed IRL expressions into the C++ template
language, eliminating the need for low-level code generation.

17

1. Introduction

Optimisation of generated code The automatic verification infers algebraic properties
of the IRL expressions. We show how to reuse these properties to generate more
efficient code.

Semimodule model of protocol interaction Our semimodule model of protocol inter-
action abstractly models current idioms such as hot-potato and cold-potato rout-
ing. It also captures the separation of locators and identifiers, as found in recent
proposals for a new Internet architecture [41]. Fundamental to this model is a
clear separation between routing and forwarding.

We commence with an overview of background and related work in Chapter 2. We
then discuss the system architecture in Chapter 3. Next, in Chapter 4, we describe the
semantic domain upon which we base our metalanguages. We then describe a restricted
metalanguage, RAML1, in Chapter 5 and describe how to compile it in Chapter 6.
In Chapter 7 we describe RAML2, which is a more expressive version of RAML1. In
Chapter 8 we show how to measure and, using properties automatically inferred during
compilation, increase the performance of compiled code. We then present an algebraic
model of protocol interactions and route redistribution in Chapters 9 and 10. Finally,
we summarise the results of this thesis and outline areas for future work in Chapter 11.

18

C 2

Background and related work

In this section we introduce the background and related work which this dissertation
builds upon. We commence with an overview of the history of Internet routing (§ 2.1).
We then review applications of domain-specific languages to networking, before sum-
marising previous work towards modularising the control plane (§ 2.3), the data plane
(§ 2.4) and network protocols (§ 2.5). Next we discuss routing algebras (§ 2.6). These
form the mathematical basis for our specification language which we use to describe
the linguistic component of routing protocols. Finally, we describe several routing al-
gorithms (§ 2.7). The metarouting system combines compiled routing languages with
routing algorithms to produce routing protocols.

2.1 A brief history of the Internet

One of the earliest visions of the Internet can be attributed to J.C.R Licklider, of the
United States Department of Defence Advanced Research Projects Agency (DARPA) [42].
In 1963 Licklider published his ‘Memorandum For Members and Affiliates of the Inter-
galactic Computer Network’ [43], which outlined ideas for network-based data access
and remote execution of programs.

Two years previously, in 1961, Leonard Kleinrock submitted his PhD thesis proposal
‘Information Flow in Large Communication Nets’ [44] which outlined a plan of study of
the theoretical properties of packet switched networks (PSNs), which form the basis of
the current Internet. This type of network characteristically segments data into uniform
messages, termed ‘packets’, which are then copied from node to node within the
network until they reach the destination [42]. Significantly, packets are independently
routed at each node. Kleinrock subsequently published several papers that made
pioneering contributions to the theoretical understanding of PSNs, demonstrating, for
example, that packet switched networks could be more efficient than circuit switched
networks (which reserve dedicated paths, or ‘circuits’, for each connection).

19

2. Background and related work

The contributions of Licklider and Kleinrock led to the creation of the first packet
switched network in 1969, called the ARPANET [42]. This network grew into today’s
Internet as other networks were incrementally connected to it. Central to the ARPANET
were packet switches, termed Interface Message Processors (IMPs) [45]. These are
precursors of current Internet routers. In contrast to today’s Internet, the network itself
attempted to reliably deliver traffic. However, the ARPANET did include a dynamic
routing protocol based upon a distance vectoring algorithm. Paths were selected so
as to minimise the total transit time of packets This required that link weights were
continuously adjusted based upon output queue lengths. The status of the ARPANET
was changed from an experimental network to an operational network in July 1975. At
this time there were fifty routers and more than seventy hosts.

The prototypical Internet protocol suite, which later became today’s Transmission Con-
trol Protocol/Internet Protocol (TCP/IP) was first defined in 1974 [46, 47]. This model
made several fundamental contributions. Firstly, it introduced the notion of a gateway
as an interface between networks, and described its role as a mechanism for translating
between networking technologies. Secondly, it described the need for a uniform ad-
dressing scheme that was independent of any particular network addressing scheme.
Finally, it outlined an internetwork protocol for reliable stream-based transmission be-
tween networks in the presence of different maximum transmission sizes and time
delays. Prior to this point, researchers had only addressed the problem of communi-
cation within single networks. The described protocol contained many of the features
found in today’s TCP/IP, including segmented transmission, the use of sequence num-
bers with a ‘sliding-window’ to detect data loss and duplication, and a time-out based
retransmission strategy. This monolithic protocol was soon separated into individual
IP [48] and TCP components [49].

In the late 1970s the ARPANET adopted a new internal routing algorithm called the
Shortest Path First (SPF) algorithm [50]. The primary motivation was the poor scalabil-
ity with the distance vector routing scheme, especially as the ARPANET now comprised
about a hundred routers. The scaling issue may have been caused by the high frequency
of routing updates; the interval between updates was just 128ms. A secondary motiva-
tion for changing the routing protocol was the observation that the distance vectoring
algorithm caused temporary, network-wide cycles during reconvergence (recall that
BGP prevents this problem by including AS paths within routing updates).

The SPF algorithm comprised two components. Firstly, there was a link-state flood-
ing mechanism, where each router periodically sent the local status of its links to all
other routers. These updates were typically smaller than the previous distance vector
updates, and required less processing. Note that SPF still dynamically computed link
weights based upon delays. Secondly, each router used the link-state updates to con-
struct a weighted graph of the network. Each router then used Dijkstra’s algorithm [10]
to independently compute shortest paths across the graph. Today’s OSPF [11] and IS-

20

2. Background and related work

IS [12] IGPs use a similar scheme.

Starting at the end of the 1970s, TCP/IP was used to start connecting the ARPANET with
other nascent networks. The host protocol of the ARPANET was itself switched from
the original Network Control Protocol to TCP/IP on January 1st 1983 [51]. Inter-network
routing was performed using the Gateway to Gateway protocol [52], which was based
upon the initial ARPANET distance vectoring protocol. A significant problem with
GGP was that it had no notion of autonomous systems. Instead, the whole of the
Internet formed a single routing domain, with all gateway nodes participating as
equals within the routing algorithm (GGP later became viewed as an IGP [53]). This
led to poor scaling and maintainability. Further, since every gateway was ‘trusted’, a
single malfunctioning gateway could cause Internet-wide traffic disruptions [54].

The problems with GGP were partially addressed by the development of the Exterior
Gateway Protocol (EGP) in 1982, a ‘standard for Gateway to Gateway procedures that
allow[ed] the Gateways to be mutually suspicious’ [54]. EGP was the first interdomain
routing protocol, incorporating the concept of independent autonomous systems. Just
as today, an autonomous system was able to run its own internal routing protocol
which would be largely unaffected by external failures. EGP was used to exchange
reachability information between gateways within both the same AS and also with
those in neighbouring ASes. One limitation with EGP was that it assumed a tree
topology of ASes built around a single ‘core’ network [55]. This requirement was
necessary because there was no facility for detecting loops.

Throughout the 1980s, the Internet continued to expand. For example, the Computer
Science Network (CSNET) [56] was created in the early 1980s. CSNET was intended
to be accessible for all computer science researchers in the United States. The network
was connected to the ARPANET and used the TCP/IP protocol. One problem with such
networks was that they were aimed at specific research communities. This motivated
the creation of the National Science Foundation network (NSFNET) in the mid-1980s
as a network for all academics [42]. The NSFNET proved to be extremely successful,
and replaced the ARPANET backbone in the late 1980s.

The tree topology imposed by EGP was soon recognised as a severe restriction to the
growth of the Internet [57, 58]. The Border Gateway Protocol [59] was developed in
the late 1980s to address this issue. BGP removed the need for a distinct backbone,
and instead permitted arbitrary topologies of peer ASes. This led to a less hierarchical
Internet topology. The original version of BGP mandated up/down/horizontal relations
between ASes. This requirement was removed in BGP-2 [60]. The most recent version
of the routing protocol, BGP-4 [8], was defined in 1995.

Throughout the 1990s, the Internet continued to grow as increasing numbers of net-
works were connected. During this period, an increasing proportion of Internet traffic
was of a commercial nature, often using private infrastructure. This led to NSFNET

21

2. Background and related work

playing a less pivotal role for the rapidly developing Internet. The NSFNET backbone
was finally retired in 1995 [61]. At this point there were millions of users, and the
Internet had largely assumed the architecture that remains to this day.

2.2 Domain-specific languages for networking

Our system accepts protocol specifications in a purpose-built language called RAML
(Routing Abstract MetaLanguage). Additionally, ‘under the hood’ in the protocol
compiler there is an algebraic language embedded within the C++ template language.
Both of these languages are examples of domain-specific languages (DSLs). In this section
we informally define what constitutes a DSL and show how particular networking
problems, such as packet parsing, can benefit from DSLs. We also briefly discuss
implementation techniques.

2.2.1 Overview

A domain-specific language is a programming language that is tailored to solving
problems in a particular problem area [62]. For this reason, DSLs typically have fairly
restricted syntax when compared to ‘general purpose’ languages. Furthermore, DSLs
are often declarative. That is, they specify what problem is to be solved without defining
the particular manner in which it is to be solved, leaving the DSL compiler free to
select the most appropriate method. Hundreds of DSLs have been created for areas
ranging from the specification of financial contracts [63] to graphics, animation and
simulation [62]. Mainstream examples of declarative DSLs include Yacc [64] for writing
parsers, Make [65] for specifying build rules and LATEX [66] for writing documents.

The main benefit of DSLs over general purpose languages is that the semantics of DSLs
can be better matched to the particular areas of application. Therefore programs written
in DSLs can be more concise and hence easier to understand than their counterparts
written in general purpose languages. Furthermore, DSL compilers can utilise domain
knowledge for purposes such as increasing efficiency and providing automated error
handling. As we show in Section 2.2.2, Yacc provides an example of a DSL that is
highly-tailored to the problem of parsing. Moreover, parser specifications written in
Yacc can be compiled into efficient, low-level code with automated error-handling.

Compilers or interpreters for DSLs can be implemented in the same manner as those
for general purpose languages. Another, alternative method is to embed the DSL within
a host language – resulting in a domain specific embedded language (DSEL) [67]. In
practice, this means defining datatypes within the host language to represent the DSEL.
A parser, evaluator and pretty-printer can then be written within the host language to

22

2. Background and related work

CFGs

Unambiguous

LALR(1)

Figure 2.1: Relationships between context-free grammars (CFGs), unambiguous gram-
mars and LALR(1) grammars of Yacc

process expressions within the domain-specific language. The benefit of this approach
as opposed to writing a stand-alone interpreter or compiler, is that programs can be
written using a combination of the host language and the DSEL.

2.2.2 Yacc as an analogy for metarouting

In this section we describe the Yacc DSL for parser generation, and compare it with
our system for generating routing protocols. Parsers written in Yacc are typically
much shorter than those that have been hand-written. Yacc is also able to generate
automatic error-handling code. Similarly, the metarouting system can generate entire
routing protocols from specifications that are typically a few lines long. Furthermore,
the generated protocols contain code for automatically handling errors such as invalid
configuration.

Yacc is based upon the theory of context-free grammars (CFGs). However, this for-
malism is only implicitly represented in the Yacc language. Similarly, the metarouting
system is based upon the theory of algebraic routing. Internally, metalanguage specifi-
cations are translated into mathematical objects such as binary operators and preorders,
although these formalisms are not explicitly represented in the metalanguage.

Yacc may only be used to write parsers for the LALR(1) subset of context-free gram-
mars (CFGs), as shown in Figure 2.1. LALR(1) grammars are so named because their
associated parsers can always be defined so as to operate from Left to right on the token
input stream (i.e. initial token first), producing a Right-most derivation. Furthermore,
such parsers can always select the next production rule using at most one token of
Look-Ahead.

Therefore, whilst Yacc cannot be used to express all CFGs, it can still express a very
useful subset. For example, the syntax of many programming languages can be ex-
pressed as LALR(1) grammars (C++ is a notable exception). Analogously, not all routing
algebras may be expressed within our metalanguage. However, we believe that those
that it can express are still of practical use.

23

2. Background and related work

Some CFGs have the property that they are ambiguous. That is, a string in the language
of the grammar may be generated in more than one way. When parsing with an
ambiguous grammar, it may be possible to reach a situation whereby there is a choice
of several possible parse rules, and hence an error must be raised. We note that
Generalised LR (GLR) parsers evade this restriction by performing all possible parses,
providing that they amount to a finite number; whenever there is a choice of reduction
rules to apply, evaluation proceeds by separately applying each such rule ‘in parallel’,
thereby performing a breadth-first search of the space of possible parses.

Some LALR(1) grammars are ambiguous, as illustrated in Figure 2.1. Hence it is possi-
ble to write an ambiguous parser in Yacc, although it is possible to detect the ambiguity
when compiling the parser specification. Analogously, within our system it is pos-
sible to specify routing languages that do not have the required algebraic properties.
In common with Yacc, we raise an error at compile-time when such situations are
encountered.

LALR(1) grammars admit efficient, table-based parsers. Yacc translates parser specifi-
cations into this form. The Bison variant of Yacc also supports the aforementioned GLR
parsers, although it only produces optimised implementations for the LALR(1) case;
whilst the LALR(1) parsing algorithm has linear worst-case complexity, the current
implementation of the Bison GLR parsing algorithm can require exponential time and
space in certain situations. Within the metarouting system, we are able to generate more
efficient implementations for a restricted set of routing algebras that have particular
algebraic properties.

2.2.3 Packet parsing

There has been considerable research devoted to the problem of language techniques
for generating efficient, error-free packet parsing code. PacketTypes [68] is a DSL for
specifying packet formats. This system eliminates the error-prone process of manu-
ally implementing packet parsers (often in C). Furthermore, PacketTypes specifications
retain much of the semantic information contained in textual packet format specifica-
tions. PacketTypes specifications are compiled into efficient C code which automatically
checks for errors. The resulting code can be interfaced with other C code.

BinPAC [69] is another DSL that is similar in scope to PacketTypes. However, BinPAC
is targeted towards analysis of application-level traffic for the Bro intrusion detection
system. BinPAC specifications are able to represent bi-directional connection state.
This is necessary to handle protocols such as HTTP where replies must be associated
with particular requests. Furthermore, the language supports incremental parsers for
concurrent input. BinPAC specifications are compiled into C++ code.

Several other DSLs have been created for specifying parsers for more general data

24

2. Background and related work

formats. For example, the DataScript [70] language has been used to specify parsers
for both the ELF object format and also Java class files. More recently, PADS [71] has
been created for specifying parsers for ad-hoc data. PADS specifications are based
upon dependent types. The systems includes facilities for visualising and querying
data sources.

The metarouting system itself generates parsing code for route metrics. Whilst it might
be possible to use the aforementioned DSLs, we found that it was straightforward to
automatically generate parsers ourselves from protocol specifications.

2.2.4 Packet processing

Within the context of DSLs, packet processing has received far less attention than packet
parsing. Packet processing typically involves high-speed network switching, and is
therefore a more specialised application than plain packet parsing. With the advent
of high-performance network processors (NPs), such as the Intel IXP2400 [72], imple-
menting packet processing applications has become increasingly complicated. Modern
NPs comprise multiple processor cores with a distributed memory architecture. NP
applications normally move packet data between multiple memory banks as it is pro-
cessed through a pipeline of cores. Safely managing memory in this environment is
tedious and error-prone.

One possible solution to programming NPs is the PacLang DSL [73]. This is an imper-
ative language for multi-threaded systems that can be targeted to NPs. The language
includes a linear type system for ensuring memory safety. A case-study demonstrates
that the type system may be particularly suited to packet processing applications.
Whilst PacLang remains a research-level language, it demonstrates that DSLs can be
applied to areas that are traditionally viewed as low-level systems programming.

2.2.5 Declarative networking

P2 is a system for expressing distributed overlays as high-level, declarative specifica-
tions [74]. The system is based upon the NDlog language, a network-oriented version
of the Datalog logic programming language. The authors report that some overlay
implementations require two orders of magnitude less code when implemented within
P2. It is also possible to express routing algorithms within P2. NDlog specifications
are compiled into programs for a distributed runtime system that uses a dataflow
architecture.

We view P2 as a possible target architecture for the metarouting system. There is no
guarantee of correctness for routing protocols written within P2, and therefore it would
still be necessary to retain the property-inference aspect of the compiler.

25

2. Background and related work

2.3 Extending the control plane

In this section we discuss approaches to modularising the control plane. We first
discuss the open-source Quagga and XORP routing platforms, before briefly reviewing
the closed-source routing architectures.

2.3.1 Quagga

Quagga [36] is one of the more mature, open routing platforms. It contains implemen-
tations of the OSPF, BGP, RIP and IS-IS routing protocols. Each routing daemon runs
as a separate process, increasing the reliability of the system. Quagga also contains a
central daemon (zebra) that coordinates the individual routing daemons and commu-
nicates with the operating system routing interface. Quagga is built around a central
library of code that is shared by the different protocol implementations.

The metarouting system contains a number of algorithms that are generalised versions
of the Quagga routing protocols. We discuss the process of generalising routing proto-
cols in Chapter 3. Whilst we have not added any new routing protocols to Quagga, we
have found it relatively easy to modify the existing protocols.

2.3.2 XORP

The XORP router platform was born out of research to design low-latency, extensible
router software without sacrificing efficiency [22]. The developers argue that current
problems with high convergence times and limited innovation are not inherent to the
Internet architecture or the design of routing protocols. Rather, such problems can at
least be partially attributed to the architecture of current routing protocol implementa-
tions. Many such implementations focus upon scalability at the expense of latency and
extensibility.

The goals of extensibility and latency have led the XORP designers to adopt several
non-standard architectural features. Firstly, each protocol within XORP is implemented
as a separate process. This design provides a high degree of isolation between different
routing daemons; an error in one daemon is less likely to affect another. The multi-
process approach contrasts with the more usual design of having a single process for all
protocols. Quagga is notable as the only other open-source router platform to also have
a multi-process design. Interestingly, Cisco switched from a uni-process architecture
in their IOS platform to a multi-process architecture in their newer IOS XR platform.

Routing platforms typically supply facilities for coordinating different protocols. For
example, BGP hot-potato routing is dependent upon IGP distances, and therefore re-
quires that there is a mechanism for the RIB to supply selected IGP routes. A second

26

2. Background and related work

example is route redistribution. Here the RIB must pass routes between (almost) arbi-
trary pairs of protocols, and without impacting local route selection. In both of these
situations, the coordination mechanisms must be efficient. The co-ordination of proto-
cols is easier to achieve in a uni-process architecture where, due to the single address
space, it is easy to share data-structures between different protocols. In common with
Quagga, the multi-process design of XORP has required the creation of an efficient
inter-process communication (IPC) coordination mechanism.

Another non-standard design adopted by XORP is an event-driven routing pipeline.
A more common technique, used by both Cisco and Quagga, is to use a scanner
mechanism to periodically process pending route updates. The disadvantage of this
approach is that it causes high latencies. In contrast, an event-driven architecture
processes updates as soon as they are ready. This facility is more complicated to
implement in a multi-process architecture due to the coordination requirements. For
example, in the case of BGP, an IGP event may require the notification of the BGP
daemon, which will in turn cause a BGP event.

XORP achieves modularity within routing protocols by dividing routing into a number
of distinct stages, with each stage containing a table of routes. A routing daemon then
comprises a number of tables that have been appropriately wired together. There is
some overhead in terms of time and memory when compared to the conventional ‘one
big table’ approach. However, the advantage is that protocol implementations become
more modular and hence easier to modify. Moreover, events such as a BGP peering
going down can be easily handled by dynamically inserting new stages into the BGP
pipeline.

It is difficult to evaluate the degree of extensibility that XORP provides when compared
to Quagga, for example. Whilst it is possible that the XORP architecture may indeed
admit a more modular and hence less error-prone implementation, there is little evi-
dence to evaluate this claim. However, in the longer-term we are certainly looking to
generalise the XORP routing protocols for inclusion into the metarouting system.

2.3.3 Proprietary routing platforms

The main providers of proprietary routing platforms provide few mechanisms for
modifying or extending the routing software. Juniper has released the JUNOS SDK
which provides interfaces for packet manipulation on Juniper routers. Illustrative
examples of services created using the JUNOS SDK include load balancing, traffic
classification and quality-of-service monitoring [75]. The ExtremeXOS router operating
system from Extreme Networks also has limited facilities for extensibility, such as XML
interfaces and TCL scripting [76]. In common with the JUNOS SDK, these features
appear to be mainly targeted at placing additional services on routers and switches,

27

2. Background and related work

instead of permitting modifications to routing daemons.

2.4 Extending the data plane

In this section we describe approaches towards building extensible data planes. We
view this area as complementary to the metarouting system.

2.4.1 Click

Click [77] is a system for building modular, high-performance forwarding planes.
Typical applications are network devices such as routers and traffic shapers. A Click
forwarding plane comprises a number of elements. An element performs a single, well-
defined action, such as decrementing the Time to Live (TTL) value of an IP packet
header. A pair of elements can be associated using a connection, which represents the
potential for the directed transfer of packets from one element to another. A forwarding
plane is constructed by connecting elements to form a directed graph.

Relatively sophisticated traffic scheduling policies can be performed by combining
elements. For example, the developers of Click have implemented several variations of
Random Early Drop, which is a scheme for reducing network congestion by dropping
packets when link buffers start to become full. They have also implemented all of the
functions from the Differentiated Services (Diffserv) architecture. Components include
packet classifiers, which tag packets as they enter networks, and traffic shapers, which
control packet rates within networks. These examples demonstrate that the Click
architecture is both flexible and expressive.

Click is relatively performant compared to the standard Linux forwarding plane; one
simple benchmark shows that a Click-based router has a maximum loss-free forwarding
rate (MLFFR) of three times that of a pure Linux router. One reason for this difference
is that the Click device handling elements use direct polling of device DMA queues
instead of interrupts. This prevents receive livelock where increasing numbers of packets
cause the system to spend the majority of its time servicing interrupts at the expense of
forwarding packets.

2.4.2 NetFPGA

The NetFPGA system [78] comprises a PCI card with a Field-Programmable Gate
Array (FPGA) and four gigabit ethernet interfaces, as well as supporting software. It
is targeted at building high-performance, reconfigurable data-plane components. An

28

2. Background and related work

FPGA is a programmable logic device; the use of an FPGA allows line-rate forwarding
that would not be possible using a standard ethernet interface on a desktop computer.

We view NetFPGA as an ideal counterpart for the routing protocols generated using the
metarouting system; the NetFPGA authors have already demonstrated how to combine
the NetFPGA with routing platforms such as Quagga or XORP to build routers with
high-performance data planes. Currently our generated protocols are based upon
Quagga routing daemons, and therefore we believe that it would be straightforward to
also combine them with NetFPGA.

2.4.3 OpenFlow

OpenFlow [79] is a project that aims to help build reconfigurable ethernet networks.
OpenFlow comprises a standardised, open protocol for viewing and modifying the flow
state in ethernet switches. This permits individual flows to be sampled or rerouted,
for example. Furthermore, experimental and production traffic may co-exist on the
same physical infrastructure. The authors currently provide a reference OpenFlow
ethernet switch built using the NetFPGA system, and are also aiming for ethernet
switch manufacturers to incorporate the OpenFlow interface into their products.

OpenFlow is again complementary to the metarouting system. OpenFlow ethernet
switches may facilitate experimentation with routing protocols generated using the
metarouting system. For example, experimental traffic could be routed using generated
routing daemons, whilst production traffic could remain unaffected.

2.5 Modularising network protocols

In this section we discuss approaches towards building modular network protocols.
Again, this area is complementary to the metarouting system, although we share some
of the techniques.

2.5.1 Ensemble

Ensemble [80] is a ‘group communication’ system for building distributed applications.
Ensemble is implemented in ML, and comprises a number of protocols that can be
composed to build networking stacks. [81] shows how to formalise components from
Ensemble and generate highly-optimised code using synthesised properties.

29

2. Background and related work

2.5.2 FoxNet

FoxNet [82, 83] is a user-space implementation of the TCP/IP protocols in the Standard
ML [84] functional programming language. FoxNet was developed as part of the Fox
project, which examined the benefits of using high-level programming languages for
systems programming. FoxNet comprises a number of modular protocol components.
It is possible to reuse these components to build alternative protocol stacks. For ex-
ample, the authors have also built an implementation of the Domain Name Server
protocol using FoxNet. The authors show that functional language techniques can be
applied to build composable protocols whilst still maintaining an acceptable level of
performance.

2.5.3 Prolac

Prolac [85] shares similar goals to the FoxNet project, although instead uses the Prolac
DSL for the implementation of networking protocols. Prolac is a statically-typed,
object-oriented language that may be compiled to C code. The authors demonstrate
how to write a modular TCP in Prolac which can then be run in kernel-space. The
main benefit of using Prolac is that the high-level features of the languages allow a
clear implementation of the protocol. Furthermore, due to aggressive optimisations
within the Prolac compiler, the performance of the Prolac TCP is comparable to that of
a hand-coded C implementation.

2.5.4 Melange

Melange [86] is a system for creating network protocols and applications. It comprises
two components: a DSL called MPL (the MetaPacket Language) for the specification of
packet formats, and an OCaml framework for the implementation of application logic.
MPL is itself compiled into imperative-style OCaml code. The authors demonstrate
that by combining a packet specification language with the type-safe, garbage collected
OCaml language, it is possible to generate high-performance network services such as
a DNS or a Secure Shell (SSH) server.

2.6 Algebraic routing

In this section we introduce routing algebras. These form the theoretical basis upon which
we construct our routing metalanguage. We commence with some basic definitions of
graphs before moving onto semiring routing and related generalisations.

30

2. Background and related work

1

2

3

4

5

2

6 4

31

45

(a) Labelled graph

A =

1 2 3 4 5

1 ∞ 2 1 6 ∞

2 ∞ ∞ ∞ ∞ 4
3 ∞ 5 ∞ 4 3
4 ∞ ∞ ∞ ∞ ∞

5 ∞ ∞ ∞ ∞ ∞

(b) Adjacency matrix

Figure 2.2: Graphical depiction of example labelled graph G = (V, E) and associated
adjacency matrix A. The graph has vertex set V = {1, 2, 3, 4, 5} and edge set E =

{(1, 2), (1, 3), (1, 4), (2, 5), (3, 2), (3, 4), (3, 5)}. The arc weights are from the set N∞.

2.6.1 Weighted graphs

Suppose that we have a graph G = (V, E), where V corresponds to the set of vertices
and E ⊆ V ×V corresponds to the set of edges. We shall require that V and E are finite.
We can label a graph by using a weight function w ∈ E → S for some set S. Given a
labelled graph, we can equivalently represent it as an adjacency matrix

A(i, j) =

 w(i, j) (i, j) ∈ E
ω⊗ otherwise

where ω⊗ is some distinguished element in S (we later place certain requirements on
ω⊗). Entry A(i, j) then denotes the weight of arc (i, j), or ω⊗ if there is no such arc.
Figure 2.2 illustrates an example labelled graph and its associated adjacency matrix.
We note that this is a directed graph; the presence of an arc (i, j) does not necessarily
imply that there is also an arc (j, i). The arc labels are drawn from the setN∞ = N∪{∞}

i.e. the set of natural numbers, extended to include the element ∞. Here we take
ω⊗ = ∞.

2.6.2 Paths

Let a non-empty path over G comprise a finite, ordered list of nodes µ = 〈i0, i1, . . . , im〉,
where (uk, uk+1) ∈ E for 0 ≤ k < m. Denote the first and the last vertices of a path µ by
first(µ) = i0 and last(µ) = im. Let ε denote the empty path 〈〉; we shall interpret this path
as ‘invalid’. Denote the set of all finite paths over G by paths(G), and the set of finite
paths over G from i ∈ V to j ∈ V by

paths(G, i, j) = {µ ∈ paths(G) | first(µ) = i ∧ last(µ) = j}.

31

2. Background and related work

Let µ, ν ∈ paths(G) \ {ε}, with µ = 〈i0, i1, . . . , im〉 and ν = 〈 j0, j1, . . . , jn〉. Define the path
composition of µ and ν as

µ ◦̂ ν =

 〈i0, . . . , im, j1, . . . jn〉 last(µ) = first(ν)
ε otherwise.

For µ, ν ∈ paths(G), extend path composition to operate over the empty path as

µ ◦ ν =

 ε ν = ε ∨ µ = ε

µ ◦̂ ν otherwise.

2.6.3 Minimum path weights

In this section we algebraically define the minimum path weight between pairs of nodes
in a weighted graph. We show how basic, high-level requirements, such as that the
minimum path weight is invariant under the order of weight summarisation, naturally
lead to the adoption of an algebraic structure known as a semiring. We note that more
detailed discussion of this topic may be found in [4, 87, 88].

Weight concatenation

Suppose we have a graph G = (V, E), labelled according to the weight function w ∈
E → S. How might we weight paths in G with elements of S? The simplest method is
to use a monoid (S, ⊗) [89]. We term this the multiplicative monoid (we shortly define
a second monoid, called the additive monoid). A monoid has an associative binary
operator ⊗ ∈ S× S→ S and an identity α⊗ ∈ S satisfying α⊗ ⊗ s = s⊗ α⊗ = s for s ∈ S. As
an aside, if we remove the requirement for an identity then we obtain a semigroup. For
our purposes, we additionally require that our monoid has annihilatorω⊗ ∈ S satisfying
ω⊗ ⊗ s = s ⊗ ω⊗ = ω⊗ for all s ∈ S.

Paths are weighted by using the multiplicative monoid to concatenate the weights of
individual arcs. That is, given a path µ = 〈i0, i1, . . . , im〉 ∈ paths(G) \ {ε}, its weight is
defined as

w(µ) = w(i0, i1) ⊗ · · · ⊗ w(im−1, im).

Let the weight of the empty path be defined as

w(ε) = ω⊗.

We illustrate the concatenation of arc weights in Figure 2.3. Suppose that we have
some path µ = 〈i, . . . , j〉 with weight w(µ) = s. Now consider extending the path to
ν = µ ◦ 〈 j, k〉 = 〈i, . . . , j, k〉 with w(j, k) = t. Then, from the definition of the weight
function, we have w(ν) = w(µ) ⊗ w(j, k) = s ⊗ t.

32

2. Background and related work

i j kts

s ⊗ t

Figure 2.3: Example of concatenating arc weights. Let µ = 〈i, . . . , j〉 with w(µ) = s.
Then for the extended path ν = µ ◦ 〈 j, k〉 = 〈i, . . . , j, k〉 with w(j, k) = t, we have
w(ν) = w(µ) ⊗ w(j, k) = s ⊗ t.

We now examine the property requirements. Firstly, associativity implies that given
some path µ = 〈i, j, k, l〉 then

w(µ) = w(i, j) ⊗ [w(j, k) ⊗ w(k, l)]
= [w(i, j) ⊗ w(j, k)] ⊗ w(k, l).

Therefore, it is only necessary to preserve the sequence and not the order of multipli-
cation. This is why the multiplications are not ordered in the definition of the weight
function. Secondly, the identity α⊗ provides a convenient ‘initialising value’ when
incrementally computing the weight of a path; multiplying the weight of a path by α⊗
has no effect. Finally, should the infinity ω⊗ ever be obtained during the incremental
computation of a path weight, then the weight of the whole path will also be ω⊗. This
corresponds to the intuition that it should not be possible to extend the invalid path to
obtain a valid path.

One common example of a monoid is Plus = (N∞, +). That is, addition over the
natural numbers extended to include infinity. For n ∈N∞ we extend the usual addition
operation to operate over infinity as

∞ + n = n +∞ = ∞.

Addition is clearly associative and commutative. It also immediately follows from our
definition of infinity that ω+ = ∞. We also have that α+ = 0, because for x ∈ N∞ we
have 0 + x = x + 0 = x. Therefore Plus is indeed a monoid.

Weight summarisation

We now turn to the issue of weight summarisation. Suppose that there are two paths
µ, ν ∈ paths(G, i, j) for i, j ∈ V, with w(µ) = s and w(ν) = t. How might we summarise
their weights? Here we use a commutative monoid (S, ⊕). We term this the additive
monoid. A monoid is commutative if for all s, t ∈ S we have s ⊕ t = t ⊕ s. For our
purposes, we additionally require that α⊕ = ω⊗. This is an example of a linking axiom
connecting the properties of the additive and multiplicative monoids.

We use the additive monoid to summarise the weights of µ and ν as w(µ)⊕w(ν) = s⊕ t.
This is demonstrated in Figure 2.4. The commutativity and associativity of (S, ⊕) ensure

33

2. Background and related work

i ⊕ j

s

t
s ⊕ t

Figure 2.4: Example of summarising path weights. Suppose that we have two paths
µ = 〈i, . . . , j〉 and ν = 〈i, . . . , j〉, with w(µ) = s and w(ν) = t. Then the weights of µ and
ν are summarised as w(µ) ⊕ w(ν) = s ⊕ t.

1

2

3

4

5

6

452

1

4

3

(a) Labelled graph

A∗ =

1 2 3 4 5

1 0 2 1 5 4
2 ∞ 0 ∞ ∞ 4
3 ∞ 5 0 4 3
4 ∞ ∞ ∞ 0 ∞

5 ∞ ∞ ∞ ∞ 0

(b) Minimum path weights

Figure 2.5: Example graph and matrix of minimum path weights. The bold arcs depict
the minimum cost paths from vertex 1.

that given a set of paths, their weights can be summarised in any order. Furthermore,
the requirement that the additive identity is the multiplicative infinity ensures that any
path is preferred to the invalid path i.e. for all µ ∈ paths(G, i, j) we have

w(µ) ⊕ w(ε) = w(ε) ⊕ w(µ) = w(µ).

A second example of a monoid is minimisation over the natural numbers, extended
to include infinity. That is, Min = (N∞, min), where for n ∈ N∞ we extend the usual
minimisation operator to operate over infinity as

min(∞, n) = min(n, ∞) = n.

Minimisation is both associative and commutative. We also have that αmin = ∞ and
ωmin = 0. Therefore Min is indeed a monoid.

34

2. Background and related work

i j k⊕ r

s

t

(s ⊕ t) ⊗ r

Figure 2.6: Example of using distributivity. Let µ = 〈i, . . . , j〉 and ν = 〈i, . . . , j〉, with
w(µ) = s and w(ν) = t. Then in order to summarise the weights of the two paths
µ′ = 〈i, . . . , j, k〉 and ν′ = 〈i, . . . , j, k〉, we can distribute the common multiplication i.e.
w(µ′) ⊕ w(ν′) = (w(µ) ⊕ w(ν)) ⊗ w(j, k) = (s ⊕ t) ⊗ r.

Minimum path weights

We now define the minimum path weight from i to j as the summarised weight of all
paths from i to j i.e.

δ(i, j) =

α⊕ i = j

⊕∑
µ∈paths(G, i, j)

w(µ) otherwise.
(2.1)

Figure 2.5 illustrates the results of computing minimum path weights using our exam-
ple monoids (S,⊕) = Min and (S,⊗) = Plus. If arc weights are taken to be distance, then
this particular algebraic structure yields ‘shortest’ paths.

2.6.4 Semirings

There are many algorithms for efficiently computing δ(u, v) instead of individually
calculating and then summarising the weights of all paths from u to v; we list several
in the next section. One property that may be required by these algorithms is distribu-
tivity. Given monoids (S, ⊕) and (S, ⊗), we say that the multiplicative operator (right)
distributes over the additive operator if for all s, t, r ∈ S, we have

(s ⊕ t) ⊗ r = (s ⊗ r) ⊕ (t ⊗ r).

There is also a similar left distribution rule:

r ⊗ (s ⊕ t) = (r ⊗ s) ⊕ (r ⊗ t).

We say that a pair of monoids (S, ⊕) and (S, ⊗) are distributive if they are both left
distributive and right distributive.

We can now define a semiring. Suppose that we have a pair of monoids (S, ⊕) and
(S, ⊗), with the former commutative. Furthermore, suppose that we have the linking
axioms (i) α⊕ = ω⊗, and (ii) ⊗ distributive over ⊕. Then we call this structure a

35

2. Background and related work

semiring. We often denote semirings by the triple (S, ⊕, ⊗). An example of a semiring
is MinPlus = (N∞, min, +).

In Figure 2.10 we summarise the algebraic properties of semirings and related algebraic
structures. In this figure, we define properties and write (S) to indicate that holds of
the algebraic structure S. For example, we have the property , which corresponds
to associativity of binary operators. We then write (S, ⊕) to say that (S, ⊕) is
associative.

Figure 2.6 demonstrates the significance of distributivity. Suppose that we have two
distinct paths, µ = 〈i, . . . , j〉 and ν = 〈i, . . . , j〉, with w(µ) = s and w(ν) = t. Furthermore,
suppose that there is an additional arc (j, k) with w(j, k) = r. Extend µ and ν with this
arc to obtain the paths µ′ = 〈i, . . . , j, k〉 and ν′ = 〈i, . . . , j, k〉. Then, using Equation 2.1,
we can compute the minimum path weight from i to k as

δ(i, k) =

⊕∑
µ∈paths(G, i, k)

w(µ)

= w(µ′) ⊕ w(ν′)
= (s ⊗ r) ⊕ (t ⊗ r).

However, using the distributivity property, we can effectively ‘factorise’ the weights of
the sub-paths µ and ν:

δ(i, k) =

⊕∑
µ∈paths(G, i, k)

w(µ)

= w(µ′) ⊕ w(ν′)
= (w(µ) ⊗ w(j, k)) ⊕ (w(ν) ⊗ w(j, k))
= (w(µ) ⊕ w(ν)) ⊗ w(j, k)
= (s ⊕ t) ⊗ r.

Exploiting distributivity can lead to more efficient methods of computing minimum
path weights. Furthermore, without distributivity, some algorithms may compute only
locally-minimal path weights. That is, path weights that are minimal according to the
path weights of neighbours, but which are not globally minimal. We further describe
the implications of non-distributive semirings in Section 2.6.7.

2.6.5 Matrix semirings

Suppose that we have a seimring S = (S, ⊕, ⊗). Let MV(S) denote the set of V × V
matrices containing elements from S. Then, somewhat overloading notation, define
the matrix semiring over S as (MV(S), ⊕, ⊗), where for A, B ∈ MV(S) and i, j ∈ V we
define the operators

(A ⊕ B)(i, j) = A(i, j) ⊕ B(i, j).

36

2. Background and related work

i

k1

k2

k3

j

⊕

⊕

A(i, k1)

A(i, k2)

A(i, k3)

B(k1, j)

B(k2, j)

B(k3, j)

(A ⊗ B)(i, j)

Figure 2.7: Matrix multiplication operation. Suppose that A(i)(k) and B(k)(j) corre-
spond to path weights from i to k and k to j, for all k ∈ V. Then (A ⊗ B)(i)(j) is the
minimal weight path from i to j using those underlying paths.

and

(A ⊗ B)(i, j) =

⊕∑
k

A(i, k) ⊗ B(k, j).

The matrix semiring has additive identity

W(i, j) = α⊕

and multiplicative identity

I(i, j) =

 α⊗ i = j
α⊕ otherwise

It is easy to show that in order for MV(S) to be a semiring, it is only necessary for S
to be a semiring i.e. this construction can be applied to any semiring to yield a matrix
semiring.

Notice that the matrix multiplication operation is defined in terms of both the under-
lying multiplication and addition operations. Figure 2.7 gives some insight into the
behaviour of the matrix multiplication operation. Suppose that A(i, k) and B(k, j) cor-
respond to path weights from i to k and k to j, for all k ∈ V. Then (A ⊗ B)(i, j) is the
minimal weight path from i to j using those underlying paths.

2.6.6 Routing solutions

In this section we show how to characterise minimal path weights as solutions to
equations over matrix semirings. Let S = (S, ⊕, ⊗) be a (matrix) semiring. For A ∈ S,
define the powers

A0 = I
Ak = A ⊗Ak−1 k > 0

37

2. Background and related work

i j

k

l

Figure 2.8: Example of locally-optimal path due to non-distributive semiring. The
dashed subpath 〈 j, k, l〉 is less preferred than 〈 j, l〉, and is therefore not advertised by
j to i. However, in a non-distributive semiring the ‘upper’ path 〈i, j, k, l〉 may in fact
be more preferred than the ‘lower’ path 〈i, j, l〉, causing i to select a path that is only
locally-optimal.

Then, define the closure of A as

A∗ = A0
⊕A1

⊕ · · ·

There are several sufficient conditions for the existence of this value, including that I is
the additive infinity [4]. It is easy to show that

A∗(i, j) = δ(i, j)

We also have that A∗ solves for X the equation

X = (A ⊗ X) ⊕ I.

We term this the routing equation. We shall revisit it when discussing the difference
between routing and forwarding in Chapter 9.

2.6.7 Bisemigroups

In some cases a structure S = (S, ⊕, ⊗) satisfies all of the semiring axioms with the
exception of the distributivity rules. These structures may still be used for finding
solutions to the routing equation

X = (A ⊗ X) ⊕ I.

However, solutions X need not satisfy the global optimality condition X(i, j) = δ(i, j).
They are instead only locally-optimal solutions [90, 91]. That is, each element X(i, j) is
optimal given the values X(k, j) of adjacent nodes k ∈ V. This situation is illustrated in
Figure 2.8.

We are interested in non-distributive semirings because they may still be used for
representing routing languages, albeit with weaker optimality conditions. We note that
BGP is itself non-distributive [90]; operators may be willing to lose global optimality
for greater policy control. We define a bisemigroup as a semiring that need not satisfy
the distributivity axioms.

38

2. Background and related work

s

i

j

w(i, j)δ(s, i)

δ(s, j)

Figure 2.9: Illustration of the relaxation step. The triangle inequality implies that
d[j] ≤ d[i] ⊗w(i, j). Therefore we set d[j] = d[j] ⊕ (d[i] ⊗w(i, j)) .

2.7 Algorithms

In this section we describe a number of generalised algorithms for computing minimum
path weights over graphs labelled with semirings. The metarouting system contains
implementations of these algorithms. We present the algorithms in pseudo-code, some-
what akin to C.

2.7.1 Bellman-Ford algorithm

We first describe a generalised version of the Bellman-Ford algorithm [92, 93]. This is
a single source algorithm. That is, it finds the minimum path weight from some source
s ∈ V to each destination d ∈ V. The algorithm is illustrated below in pseudo-code:

1 BellmanFord(graph G, vertex s)
2 # Initialise
3 for i in vertices(G)
4 d[i]← α⊕
5 d[s]← α⊗
6 # Main loop
7 for 1 to size(vertices(G)) − 1
8 for (i, j) in edges(G)
9 alt← d[i] ⊗w(i, j)

10 d[j]← d[j] ⊕ alt

The algorithm maintains a vector d[i] containing the current best-estimates of path
weights from s to i ∈ V. Initially, in lines 4 – 5, these estimates are set to α⊕ for i ∈ V \ {s}
so that any other distance is preferable during the relaxation step (see below). For s, an
‘estimate’ of α⊗ is adopted (line 5). This value acts as the identity for subsequent path
weight multiplications.

The main body of the algorithm occurs in lines 7 to 10. Here, each edge is ‘relaxed’
|V| − 1 times. That is, given an edge (i, j) ∈ E, the current best-estimate path-weight to
j is compared with the path weight formed by combining the minimum path weights

39

2. Background and related work

from s to i and from i to j. The more-preferred of these two values is then adopted.
In this manner, minimum path weights are propagated along paths. This process is
called relaxation because it ensures that the triangle inequality is satisfied. The triangle
inequality, illustrated in Figure 2.9, states that the minimum path weight from s to j
should always be more preferred than the combined minimum path weights from s to
i and from i to j. When this algorithm terminates, we have that d[i] = δ(s, i).

It is straightforward to derive the time complexity of this algorithm. In lines 7 to 10,
each edge is relaxed |V| − 1 times, and there are |E| such edges. Therefore the time
complexity of the generalised Bellman-Ford algorithm is O(|V|.|E|). In the worst case,
|E| = |V|2, and the time complexity becomes O(|V|3).

The Bellman-Ford algorithm has relatively weak property requirements for conver-
gence, only requiring that metrics become less preferred when policy is applied. A
distributed version of the algorithm is found in vectoring routing protocols such as
RIP [13] and BGP [9]. A significant problem with the algorithm is that unless paths are
explicitly tracked (as is the case with BGP), then ‘counting to infinity’ can occur. This
happens when a route become unavailable, but old information about it still persists
in the network. It can cause network-wide cycles, where each router believes that its
neighbour still has a valid route to the destination. The result is that metric values
continually increase until the top most metric (infinity) is reached, at which point the
route is removed.

2.7.2 Dijkstra’s algorithm

The next algorithm is a generalised version of Dijkstra’s algorithm [10]. Again, this is a
single source algorithm. In contrast to the Bellman-Ford algorithm, Dijkstra’s algorithm
requires a stronger set of algebraic properties. In particular, it is necessary for (S, ⊕, ⊗)
to be a semiring, and for ⊕ to be idempotent and selective. The generalised algorithm
is shown below in pseudo-code:

1 Dijkstra(graph G, vertex s)
2 # Initialise
3 for i in vertices(G)
4 d[i]← α⊕
5 d[s]← α⊗
6 Qd← vertices(G)
7 # Main loop
8 while (not empty(Qd))
9 i← extract head(Qd)

10 for j in adj(i)
11 alt← d[i] ⊗w(i, j)

40

2. Background and related work

12 d[j]← d[j] ⊕ alt

The algorithm maintains a vector d[i] containing the current best-estimates of path
weights from s to i ∈ V. Initially, these estimates are set to α⊕ for i ∈ V \ {s} (line 4), so
that any other path weight is preferred during the relaxation step (see below). For s,
the estimate is set to the initialising value of α⊗ (line 5). The algorithm also has a queue
of vertices Qd, ordered by increasing path weight estimates d[i]. Initially, all vertices
are placed into the queue (line 6). At each iteration of the algorithm (lines 8 to 12),
the vertex i at the head of the queue is extracted. At this point d[i] corresponds to the
minimum path weight from s to i. Finally, each neighbour j of i is relaxed (lines 10 to
12). At termination, we have that d[i] = δ(s, i).

There has been extensive work in reducing the time and space complexity of this al-
gorithm. Large improvements can be made purely by adopting more efficient queue
implementations. We briefly summarise the basic results from [93]. The simplest im-
plementation of Dijkstra’s algorithm uses an array. This requires O(|V|) comparisons to
find the minimum element. Each vertex is extracted once, leading to V such operations,
and hence an overall time complexity of O(|V|2) The running time can be improved if
the graph is sparse i.e. there are relatively few edges. In particular, if E = o(|V|2/ log |V|)
then the queue can be implemented using a binary min-heap. Each update and queue
extraction costs O(log |V|). There are at most |E| of the former, and |V| of the latter,
resulting in a running time of O((|E|+ |V|) log |V|). This bound can be improved still fur-
ther by adopting a Fibonacci heap. The queue extraction remains at O(log |V|), whilst
the update cost is reduced to O(1). This results in time complexity of O(|V| log |V|+ |E|).

Under certain assumptions, the running time of Dijkstra’s algorithm can be improved
still further. One approach involves scaling, whereby the edge weights are modified
so that more efficient, non-numeric algorithms may be used. Using this technique,
Gabow [94] showed how to obtain a O(|V|

3
4 |E| log N) running time, where N is the

largest edge weight or path weight estimate. More recently, Thorup [95] has shown
how to find the single-source shortest path in linear time and space on a RAM model
using a restricted set of instructions. This approach assumes that the graph is undirected
and that the weights are bounded, positive integers.

Dijkstra’s algorithm is used in both the OSPF [11] and IS-IS [12] routing protocols.
Both of these protocols use a link-state flooding mechanism to propagate reachability
information between routers (in the same ‘area’). Each router then individually com-
putes shortest-paths using Dijkstra’s algorithm. In the case of multiple areas, a distance
vectoring mechanism based upon the Bellman-Ford algorithm is additionally used.

41

2. Background and related work

2.7.3 Iterative matrix algorithm

We now give an algorithm for finding minimal path weights between all pairs of
nodes [5]. We term this algorithm the iterative matrix algorithm. It can be viewed as a ver-
sion of the Bellman-Ford algorithm that has been generalised to compute single-source
minimal path weights for all sources in parallel.

For a matrix semiring S = (S, ⊕, ⊗), with A ∈ S, define the algorithm as

A(0) = I
A(k+1) = A(k)

⊕Ak+1 k ≥ 0

For matrix size n and k iterations, this algorithm has time complexity of O(k.n3). Under
certain conditions this algorithm converges in n iterations, leading to a time complexity
of O(n4).

2.7.4 Recursive matrix algorithm

A variant of the iterative matrix algorithm is the recursive matrix algorithm. This
algorithm is defined as follows:

A[0] = I
A[k+1] = (A[k]

⊗A) ⊕ I k ≥ 0

It is easy to show that if distribution holds, then A[k] = A(k). We give the proof below.

Proof. Proceed by induction. Base case holds by definition. Inductive case:

A[k+1] = A[k]
⊗A ⊕ I

= A(k)
⊗A ⊕ I (induction hypothesis)

= (
⊕

0≤l≤k Al) ⊗A ⊕ I
= (
⊕

1≤l≤k+1 Al) ⊕ I (left distribution)
=
⊕

0≤l≤k+1 Al

= A(k+1)

�

42

2.Background
and

related
w

ork

Property name Definition Semigroup Monoid Semiring ⊕ Semiring ⊗
 (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) X X X X

 x ⊕ y = y ⊕ x X

 ∃α⊕ ∈ S. x ⊕ α⊕ = α⊕ ⊕ x = x X X X

 ∃ω⊕ ∈ S. x ⊕ ω⊕ = ω⊕ ⊕ x = ω⊕ X

 x ⊕ x = x
 x ⊕ y ∈ {x, y}
 x ⊕ y = x ⊕ z⇒ y = z
 y ⊕ x = z ⊕ x⇒ y = z
 x ⊕ y = x ⊕ z
 y ⊕ x = z ⊕ x

(a) Properties of semigroups (S, ⊕)

Property name Definition Bisemigroup Semiring
 x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z) X

 (y ⊕ z) ⊗ x = (y ⊗ x) ⊕ (z ⊗ x) X

 (S, ⊕) ∧ (S, ⊗) ∧ α⊕ = ω⊗ X

 (S, ⊕) ∧ (S, ⊗) ∧ ω⊕ = α⊗
 x ⊕ y = x⇒ (z ⊗ x) ⊕ (z ⊗ y) = z ⊗ x
 x ⊕ y = x⇒ (x ⊗ z) ⊕ (y ⊗ z) = x ⊗ z

(b) Properties of bisemigroups (S, ⊕, ⊗)

Figure 2.10: Properties of semigroups, bisemigroups and related structures. Free variables are universally quantified.

43

C 3

System architecture

In this chapter we describe the high-level architecture of the metarouting system.
We commence with an overview of the system design (§ 3.1). We then describe the
individual components of the system: the routing interface that defines the interactions
between routing languages and algorithms (§ 3.2), how routing languages are compiled
to satisfy the routing interface (§ 3.3) and the implementation of the routing algorithms
(§ 3.4). Finally we discuss the user interfaces to the metarouting system, including how
to configure generated protocols (§ 3.5).

3.1 Design overview

A routing protocol can be decomposed into three components: a language, an algorithm
and a proof of correctness. In this section we examine each component, and show how
this logical separation can be exploited to produce an architecture for the creation of
new routing protocols from high-level specifications.

Recall that a routing language abstractly specifies the types of metrics and policy,
and the results of applying policy to metrics. We wish to allow users the flexibility
to define their own routing languages, instead of being limited to the pre-defined
routing languages of current protocols. For this purpose we define a domain-specific
language for specifying routing languages i.e. a metalanguage. We term this language
the Routing Abstract Metalanguage (RAML). We describe restricted and extended
variants of RAML, termed RAML1 and RAML2, in Chapters 5 and 7 respectively. In
particular, we draw attention to the simple example of a RAML1 routing language that
is given in Section 5.1.

We would like users to be able to specify what a routing language should compute
without defining how it should do this. For example, users should not be concerned
with the specifics of choosing the appropriate data-type to represent a set, nor how to
efficiently implement the union operation. This leads us to choose a declarative design

44

3. System architecture

for RAML. In Chapter 8 we show how this approach allows the metarouting system
the freedom to select efficient datatypes itself.

We convert RAML specifications into fast, executable code by compiling the language
into C++. We have chosen to compile RAML, instead of interpreting it, for efficiency
reasons; routing is performance-sensitive and an interpreted language implementa-
tion is typically slower than a compiled implementation. Furthermore, our particular
approach to compilation has a relatively light-weight implementation, and therefore
we suffer little from the increase in complexity that is usually associated with com-
piled language implementations. We give an architectural overview of compilation in
Section 3.3 and describe the implementation details in Chapter 6.

The definition of RAML embodies a delicate tension between expressivity and com-
putability. On the one hand, we wish for RAML to be able to express a useful set of
routing languages. Although it is impossible to formally define this set, it is certainly
desirable that we can express those routing languages that are embodied in current
routing protocols. On the other hand, we would like to be able to automatically prove
correctness of the resulting protocols. If the metalanguage is too expressive then it
is possible that we might no longer be able to automatically prove correctness for all
definable routing languages. Our current version of RAML is sufficiently constrained
so as to maintain decidability of correctness. We believe that it is still possible to define
a wide range of useful routing languages within RAML. We discuss the semantics of
RAML, including automatic property inference, in Chapter 4.

Now suppose that we have an executable routing language, perhaps compiled from a
RAML specification. In order to define a routing protocol, it is necessary to combine the
routing language with a routing algorithm. Note that we can define a routing algorithm
independently of a particular choice of routing language. For example, Dijkstra’s
algorithm (§ 2.7.2) requires only that a routing language contains the operations ⊕
and ⊗ over some set S, and the constants α⊕, α⊗ ∈ S (in addition to some algebraic
properties). This suggests that we can create a library of pre-defined, generic routing
algorithms that can be combined with compiled routing languages to produce routing
protocols. We further describe routing algorithms in Section 3.4.

In practice, useful routing algorithms require that routing languages implement addi-
tional functions. For example, in order to configure a routing protocol, we need some
way of converting textual representations of metrics and policy into elements of S.
Similarly, to debug a routing protocol it is necessary to convert elements of S back into
textual representations. Distributed algorithms also require some way of converting
elements of S into efficient byte-strings for transfer over the network. This approach
requires that there is a well-defined interface between compiled routing languages and
the generic routing algorithms. We term this a routing interface. We describe the routing
interface in Section 3.2.

45

3. System architecture

To summarise, our system comprises (i) a declarative language, called RAML, for the
specification of routing languages, (ii) a compiler to generate efficient, executable code
from RAML specifications, (iii) a library of generic routing algorithms that can be
combined with compiled routing languages and (iv) a routing interface that defines
how routing languages and routing algorithms interact.

3.2 Routing interfaces

A routing interface specifies the permitted interactions between a routing language
and a routing algorithm. In our case, we specify a routing interface as a collection of
C function prototypes; a compiled routing algorithm then contains code to implement
these functions, whilst a routing algorithm may only access these functions within the
routing language. Figure 3.1 gives an example interface for a vectoring algorithm such
as the distributed Bellman-Ford algorithm employed by RIP. In the remainder of this
section, we describe this interface and explain the reasons for adopting this particular
level of abstraction.

The init and deinit functions are required to respectively initialise and deinitialise any
state in the routing language implementation. Examples of such state include persistent
data structures such as hash-tables and queues. We require that a routing algorithm
executes the init function exactly once and before any other the other routing interface
functions are invoked. Similarly, a routing algorithm must invoke the deinit function
exactly once, and no other routing interface functions may be subsequently invoked.

The id function returns a hashed representation of the routing language. Hashes are
computed at compile time by applying a hash function to the abstract syntax tree of
routing languages. The purpose of hashes is to detect configuration errors whereby
adjacent routing daemons communicate using different routing languages. These sit-
uations are undesirable because we are not able to guarantee that such ‘hybrid’ proto-
cols are well-behaved (allowing safe interaction between different routing languages
remains an area for future work; such a facility might be useful when upgrading de-
ployed routing protocols, for example). Routing daemons use hashes to detect such
errors by checking that adjacent daemons have identical routing language hashes to
their own. We note that this is only a probabilistic guarantee because hash collisions
are possible, although the likelihood of such errors can be reduced by using larger hash
sizes.

Metrics and policy are represented within the interface as abstract values of typevoid *.
By design, routing algorithms cannot access such values directly and instead must
indirect via the routing interface. Furthermore, values of these types must be explicitly
copied and freed, using the copy and free functions respectively. This ensures that

46

3. System architecture

the routing language implementation has maximum flexibility when choosing concrete
implementations of these types. For example, integers may have literal representations,
whilst more complex data-structures may be heap-allocated.

The metric_hash function computes the hash of a metric. This facility is used by some
routing algorithms to implement a limited form of sharing. This prevents equivalent
values from being represented more than once in the runtime. In Chapter 8 we show
how to systematically enable sharing within compiled routing languages, thus largely
eliminating the need for this function. Note that we have been able to introduce such
optimisations without altering the routing interface or any of the routing algorithms.
This supports the claim that the routing interfaces introduce an appropriate level of
abstraction.

A routing algorithm is typically configured using textual representations of metrics and
policy. The routing language must therefore provide some mechanism of parsing such
values into the internal representations. For this purpose there is the metric_parse
function which converts a character buffer into a metric_t. Similarly, in order for
an operator to understand the behaviour of a routing protocol, it must be possible to
obtain a textual representation of a metric or policy value. This facility is provided by
the metric_print function, which places a textual representation of a metric_t into
the specified buffer.

A distributed routing algorithm requires a method of efficiently transferring met-
rics (and also policy, for Dijkstra-like algorithms) between daemons. For a conven-
tional routing protocol, the ‘wire’ representation of these values is specified as part
of the packet format. For us, the wire representation potentially changes for each
routing language. Therefore a routing language must provide metric_marshal and
metric_unmarshal functions. The former converts a metric_t value into a linear se-
quence of bytes so that it may be transferred across the network, whilst the latter
performs the inverse operation to obtain a metric_t.

A routing algorithm typically requires one or more distinguished constants. In this
example, the algorithm requires an ‘infinity’ (α⊕) metric value to denote invalid routes.
This facility is provided by the metric_infinity function, which returns the required
value. Furthermore, routing algorithms must typically test for equality against such
constants. Here, this facility is provided by the metric_is_infinity function. The
interface also provides the function metric_is_equal for testing for equality between
any two metrics. Note that although any invocation of metric_is_infinity could be
replaced by calls to metric_infinity and metric_is_equal, retaining this function
leads to more idiomatic code in routing algorithms.

Up to this point, we have mostly described what are essentially utility functions. We
now describe the interface between the compiled algebraic operators. The example in-
terface assumes that summarisation is defined as an order (instead of as a binary oper-

47

3. System architecture

ator; see Chapter 7). The compiled order is exposed as the function metric_is_better.
This function accepts two metric_t values x and y, and returns a boolean value indi-
cating whether x is preferred to y. Policy application is implemented as the function
policy_apply. This takes a metric_t value and a policy_t value, and applies the
policy to the metric to obtain another metric_t value.

3.3 Compilation

Again, recall that a routing protocol comprises a language, an algorithm and a proof
of correctness. Our compiler accepts protocol specifications comprising a routing lan-
guage and a routing algorithm. The routing language component is specified in RAML
file, whilst the routing algorithm is specified as a command-line option that names one
of several pre-defined algorithms. The compiler automatically checks the language
specification for correctness by determining its algebraic properties and verifying that
they match those required by the algorithm. The output of the compiler is an executable
routing protocol.

The compiler architecture can be logically divided into several phases, summarised
in Figure 3.5. Firstly, there is the front-end that performs basic parsing of protocol
specifications. Next there is routing language processing, where the routing language
component is translated into an intermediate language, termed the Intermediate Rout-
ing Language (IRL). We discuss variants of IRL, termed IRL1 and IRL2 in Chapters 4
and 7 respectively. After this is the property-checking stage, where the algebraic prop-
erties of the IRL term are automatically inferred, and checked against those required
by the algorithm. The result is an Annotated Intermediate Routing Language (AIRL)
term. Next is the back-end, where AIRLis translated into C++ and then, using a standard
C++ compiler, into object code. Finally, the object code is linked against the specified
routing algorithm to produce a routing protocol.

One important design choice concerns our use of an intermediate language. This
feature is standard within compiler architectures, allowing a clean separation between
the front-end and back-end. Providing that the intermediate language is sufficiently
expressive, it is often possible to augment the input language by modifying just the
front end. This feature has been of considerable benefit to us when we have added
features to RAML. A second advantage of an intermediate language is that it is often
possible to add additional target languages without modifying the front-end, although
we do not exploit this facility because we currently only target C++.

Our intermediate language, IRL, closely matches the underlying algebraic semantics
of RAML, containing explicit mathematical objects such as sets and binary operators.
This reduces the complexity of the implementation and therefore minimises the scope

48

3. System architecture

// Initialise and deinitialise routing language
void init(void);
void deinit(void);

// Identity of routing language
const unsigned char ∗ id(void);

// Type of metrics and policy
typedef void ∗metric t;
typedef void ∗ policy t;

// Explicit memory management for metrics
metric t metric copy(metric t);
void metric free(metric t);

// Identity of metrics
uint32 t metric hash(metric t);

// Interconversion of metrics
metric t metric parse(const char ∗);
size t metric print(char ∗, size t, metric t);
size t metric marshal(void ∗, size t, metric t);
metric t metric unmarshal(const void ∗, size t);

// Constants for metrics
metric t metric infinity(void);
int metric is infinity(metric t);

// Comparisons for metrics
int metric is better(metric t, metric t);
int metric is equal(metric t, metric t);

// Policy application
metric t policy apply(policy t, metric t);

Figure 3.1: An extended fragment of the C routing interface that mediates the interactions
between a compiled routing language and a routing algorithm. This particular routing
interface is for a distributed, vectoring algorithm. Note that for brevity, functions for
parsing, printing, marshalling and copying some types have been omitted.

49

3. System architecture

for implementation errors; for a given RAML term, there is often a close resemblance
between the ‘on-paper’ semantics and the IRL translation. The second advantage
of our intermediate language occurs when checking for correctness. Our notions of
correctness are given in terms of the properties of the underlying algebraic objects.
Therefore we can easily map these correctness conditions onto IRL.

The actual property checking occurs in a ‘bottom-up’ manner. The algebraic properties
of atomic terms are already known, and there are various rules for inferring properties
of non-atomic terms from the properties of their subterms. Therefore we synthesise the
algebraic properties of a given term by first computing the properties of its subterms.
During property checking, we also annotate each IRL term with its computed properties
to obtain terms within the Annotated Intermediate Routing Language (AIRL). The
reason for maintaining the property information is that it is used by the back-end to
generate more efficient target code. Note that the distinction between IRL and AIRLis
somewhat artificial because the syntactic structure of AIRLis simply that of IRL, but
augmented with algebraic properties.

The compiler targets C++ because the routing algorithms (§ 3.4) are themselves written
in C/C++, and therefore it is straightforward to interface with this code. An additional
benefit from compiling to C++ is that its template metaprogramming facilities allow a
straight-forward embedding of IRL. We also benefit from the fact that C++ is a mature
language, benefiting from high-quality optimising compilers. In Chapter 6 we explain
the actual process of generating C++ code.

The output of the compiler is dependent upon the type of target algorithm. In brief,
there are two types of algorithm: offline and online (§ 3.4). The former include Dijkstra’s
algorithm, and are used for computing routing solutions over static topologies, whilst
the latter are generalised version of the Quagga routing protocols. In the case of
offline algorithms the compiled routing language is statically linked with the algorithm
to produce a stand-alone executable. For online algorithms, the compiled routing
language is emitted as a shared library. The algorithms load the shared libraries at
runtime based upon their configuration. The advantage of this approach, over statically
linking the library, is that we can rapidly alter the routing language without having to
recompile the routing algorithm.

3.4 Routing algorithms

Our system contains two kinds of routing algorithms: offline and online. The offline algo-
rithms are executable versions of the algorithms listed in Section 2.7. Offline algorithms
essentially capture the pure algorithmic component of routing. The implementation
of these algorithms is relatively straightforward, essentially comprising some form of
iteration over a matrix structure. We do not further detail the implementation specifics.

50

3. System architecture

In contrast, online algorithms are used for actual network routing. This latter kind
of algorithm can be seen as an elaboration of the former, additionally concerned with
details such as IP addresses, packet formats and timers. The implementation of online
algorithms is therefore vastly more complicated. Fortunately, there are many mature
implementations of online routing algorithms in the form of current routing protocols.
The difficulty is that each of these algorithms have been specialised to operate upon
a particular routing language. Therefore, for each of our chosen algorithms, we have
removed the hard-wired routing language and replaced it with calls to a routing inter-
face. Currently we have modified the RIP, BGP and OSPF daemons from the Quagga
routing suite [36], although this technique could also be applied to other protocol
implementations, such those found in the XORP routing suite [22].

Figure 3.6 shows some of the changes made to the Quagga RIP rip_response_process
function when generalising it to interface to arbitrary routing languages. This code is
responsible for handling incoming routing updates. The excerpted section shows how
metrics are unmarshalled and checked for validity. Figure 3.6(a) shows the original
code. Here metrics are unmarshalled by converting a 32-bit integer from network to
host byte-order using the function ntohl. The resulting value is then checked to ensure
that it is within the permitted range [1, 16].

Figure 3.6(b) shows the results of the generalising the Quagga RIP rip_rte_process
function to use a routing interface. Unmarshalling now occurs via the routing interface
function mrc_wire_metric_unmarshal (this is a slightly more general function than the
metric_unmarshal presented earlier, although its purpose is essentially the same). The
first parameter of this function corresponds to the particular routing language in use,
whilst the next two parameters are a pointer to a buffer containing a marshalled metric
and the length of that buffer (the size of marshalled metrics can vary, depending upon
the routing language). The unmarshalled metric is then tested for validity using the
function mrc_wire_metric_is_null – unmarshalling returns a value of zero if there is
an error.

Figure 3.6 succinctly illustrates how metrics become opaque entities upon generalisa-
tion. Whereas in Figure 3.6(a) it is possible to perform an explicit comparison against
integer literals, in Figure 3.6(b) such error checking must be performed using the rout-
ing interface. This abstraction is necessary because the representation of metrics is
dependent upon the particular routing language, and therefore the routing algorithm
is not able to assume anything about the particular representation of metrics.

Whilst generalising the Quagga routing daemons, we have mostly performed only
local changes. That is, most modifications have only affected a few lines at a time, and
have simply replaced concrete manipulations of metrics with calls to the appropriate
routing interface. Significantly, our modifications have not affected the large-scale
structure of the source code. Again, this point is illustrated in Figure 3.6, where we

51

3. System architecture

have performed two local changes: firstly, to generalise the unmarshalling code, and
secondly, to generalise the error checking code. This supports the view the separation
of routing protocols into a routing language and a routing algorithm is a ‘natural’
decomposition; the original protocols have already been implemented in such a way
so as to make the underlying routing algorithms easily accessible.

Figure 3.2 provides a coarse view of the amount of work required to generalise each
routing protocol. The diff size is the number of lines output by the standard Unix
diff tool when comparing the source trees for the original and generalised routing
daemons. This value essentially corresponds to the number of lines of code that have
been added, removed or modified. The total size is simply the total number of lines
of code (including comments) in the source tree for the generalised routing daemons.
Note that all lines count values are given in thousands of lines of code.

The values in Figure 3.2 show that generalising existing protocols to use a routing
interface requires comparatively little work especially when compared to the total cost
of implementation. The Quagga BGP and RIP daemons require modifications of just
300 and 500 lines of code respectively. The larger number of modifications required
by OSPF is caused by the original protocol directly copying each routing update from
the wire into a single buffer, and then performing in-place modifications. This design
increases the performance of the protocol, but requires fixed-size metrics. Therefore it
is necessary to (slightly) more radically alter the OSPF implementation to accommodate
variable-sized metrics.

In the RIP and BGP daemons, our modifications have an associated performance
penalty caused by the overhead of invoking the routing interface. Whereas an unmod-
ified routing protocol can directly manipulate a metric or policy value, the generalised
protocols must now make at least one function call to invoke the compiled routing
language. We have very approximately quantified the execution time penalty as be-
ing around ten percent of the time taken by an unmodified daemon, although further
experiments are required.

We now take a moment to attribute the work presented in this section. The general sys-
tem design, including the routing interfaces of Section 3.2, is the result of the author’s
own work. Many of the particular design choices were arrived at by the author per-
forming a prototype generalisation of the XORP RIP routing daemon. The particular
generalisations of the Quagga BGP, OSPF and RIP routing daemons that are included
in the current metarouting system were performed by Philip Taylor and Md. Abdul
Alim. However, the resulting modified daemons adhere to the general system design
created by the author.

52

3. System architecture

Protocol Diff size Total
BGP 0.3 54
OSPF 2.9 47
RIP 0.5 11
Zebra 0.2 24
Shared 0.3 42

Figure 3.2: Summary of lines of code added or changed in Quagga compared to total
number of lines of generalised code. ‘Zebra’ is the central daemon that co-ordinates
each of the routing daemons, and ‘shared’ is the shared library code used by all protocol
implementations. Diff sizes and totals are given in thousands of lines of code.

3.5 User interfaces

In this section we describe the user interfaces to the metarouting system and the gener-
ated protocols. We aim to give an intuition for the ways in which a user might interact
with the system, rather than an exhaustive reference.

Consider the following RAML routing language that defines a routing language that is
based upon the MinPlus algebra of Chapter 2:

let min_plus : bisemigroup = min_plus_bound(W, 0, 100)

In this language, metrics and policies both take the form of integers in the range 0
to 100 (inclusive), whilst the value W denotes an error condition. We describe the
metalanguage in more detail in Chapter 5. In this section we show how to compile this
routing language into offline and online routing protocols. We first consider the offline
case.

3.5.1 Offline routing protocols

Suppose that the min_plus routing language specification is contained in a file named
min_plus.aml (the .aml suffix denotes ‘abstract metalanguage’). We compile the lan-
guage to use the iterative matrix algorithm as

mrc -matrix min_plus.aml

The mrc executable is the metarouting compiler. The result of running this command
is that an executable named min_plus is generated. This is an offline routing protocol.

Offline routing protocols operate upon textual representations of labelled graphs that
we term graph descriptions. An example of a graph description for the min_plus routing

53

3. System architecture

nodes = {

<name = n1, originate = 0>,
<name = n2, originate = 0>,
<name = n3, originate = 0>,
<name = n4, originate = 0>,
<name = n5, originate = 0>
}

arcs = {

<from = n1, to = n2, policy = 2>,
<from = n1, to = n3, policy = 1>,
<from = n1, to = n4, policy = 6>,
<from = n2, to = n5, policy = 4>,
<from = n3, to = n2, policy = 5>,
<from = n3, to = n4, policy = 4>,
<from = n3, to = n5, policy = 3>
}

1

2

3

4

5

6

5 42

1

4

3

(b) Labelled graph

−> n1 n2 n3 n4 n5
n1 0 2 1 5 4
n2 W 0 W W 4
n3 W 5 0 4 3
n4 W W W 0 W
n5 W W W W 0

(a) Graph specification (c) Matrix output

Figure 3.3: Example graph specification and matrix output for the min plus routing
language with the matrix algorithm.

language is given in Figure 3.3(a). The format specifies the names of nodes and the
weighted arcs connecting these nodes. Each node specification includes an origination
metric that defines the initial value of metrics originated by that node. The correspond-
ing graphical depiction (without originated values) is given in Figure 3.3(b). This is the
same graph that we saw in Chapter 2. As an aside, each offline protocol is also able to
randomly generate graph specifications, although we do not further discuss this feature.

We shall assume that the graph description of Figure 3.3(a) is located in a file named
min_plus.arc. The min_plus protocol is executed upon the graph description as

min_plus min_plus.arc

Figure 3.3(c) shows the resulting output. This represents a matrix of values from the
routing language. As expected, these values do indeed correspond to the shortest path
weights. Note that it is also possible to ‘linearise’ the output for viewing large graphs.

3.5.2 Online routing protocols

We now consider how to generate online routing protocols. As an example, we shall use
the same min_plus routing language. Suppose that we wished to use the generalised

54

3. System architecture

routing−language ./min plus.so

route−metric m
set 0

end−metric

route−policy p in
set 10

end−policy

router rip
default−metric m
default−policy p in
network eth0
network eth1

Figure 3.4: Example configuration for the min plus routing language with the gener-
alised RIP algorithm

RIP algorithm (essentially, distributed Bellman-Ford). We invoke the metarouting
compiler as

mrc -grip min_plus.aml

The resulting output is a shared library named min_plus.so. This library must be
loaded into the generalised RIP algorithm before it can be executed. This occurs using
a Quagga configuration file.

We give an example of a configuration file in Figure 3.4. We note that the metarouting-
specific syntax extensions for the configuration of online routing protocols have been
developed by Philip Taylor. We now briefly highlight these extensions. The ini-
tial routing-language command specifies the location of the shared library contain-
ing the routing language implementation. Metrics and policy are defined using the
route-metric and route-policy commands respectively. Here we define a metric m of
value 0 and a policy p of value 10. The default-metric m sets m to be the metric value
of originated routes (analogously to the origination metric in the previous section).
The default-policy p in sets p to be the default policy that is applied when routes
are received. Online routing protocols may also be interactively configured using the
telnet interface that is exposed by each routing daemon, although we do not explain
the details. Each telnet interface also allows the state of the running protocol to be
examined in the usual manner.

55

3.System
architecture

RAML IRL AIRL C++Protocol
specification

Split Extract Check Compile Link
Protocol
implementation

Target algorithm Routing algorithms
e.g. generalised BGP, Dijkstra

Figure 3.5: Compiler architecture. The boxes and arcs respectively denote compiler stages and the flow of data
between stages, with arc labels corresponding to the particular language generated by each stage.

/* Convert metric value to host byte order */

rte->metric = ntohl (rte->metric);

/* Is the metric valid (i.e., between 1 and 16)? */

if (! (rte->metric >= 1 && rte->metric <= 16))

{

zlog_info ("Route’s metric is not in the 1-16 range.");

rip_peer_bad_route (from);

continue;

}

/* Unmarshal metric value */

mrc_wire_metric_free (routing_language, wire_metric);

wire_metric = mrc_wire_metric_unmarshal (

routing_language, (char *) &rte->metric,

ntohl (rte->rte_len) - RIP_BASE_RTE_SIZE);

/* Is the metric valid? */

if (mrc_wire_metric_is_null (wire_metric))

{

zlog_info ("Route’s metric is not valid.");

rip_peer_bad_route (from);

continue;

}

(a) Original code (b) Generalised code

Figure 3.6: Example of generalising the source code for the Quagga RIP daemon (comments edited for brevity,
otherwise unchanged). Here we show changes made to the rip response process function. This code handles
incoming route updates and hence must unmarshal route metrics. Note that the modifications are local; they do not
affect the large-scale program structure.

56

C 4

Semantic domain

In this chapter we define the semantic domain which we use to assign a meaning,
or semantics, to our metalanguage. Firstly we define the relationships between the
metalanguage, the intermediate language, the target language, and the semantic do-
main (§ 4.1). Next, we give some basic mathematical definitions (§ 4.2). This serves as
a foundation for subsequent sections. We then define the semantic objects, comprising
semigroups (§ 4.3) and bisemigroups (§ 4.4). We also give rules which specify the
mathematical properties of algebras defined using these constructions. Finally, we de-
fine the intermediate language (§ 4.5). This is used for programmatically representing
mathematical objects from the semantic domain, and also acts as a bridge between the
metalanguage and the target language.

4.1 Overview

Our system contains a number of languages. Firstly, there is the metalanguage, RAML,
which is used for defining routing languages. We define restricted and extended
versions of the metalanguage in Chapters 5 and 7 respectively. Next, there is the
intermediate language, IRL, which contains explicit representations of types, binary
operators, orders etc. Metalanguage terms are translated into intermediate language
terms by the front-end of the compiler (§ 3.3). Finally, there is the target language, C++,
into which the compiler translates terms from the intermediate language. Generated
C++ code is then compiled into executable programs using a standard compiler. We
illustrate the relationship between these three languages in Figure 4.1. The translation
function L M, which maps from RAML terms onto IRL terms, is defined in Chapter 5.

We formally relate RAML and IRL terms using a semantic domain, D, which we
define in this chapter. The semantic domain contains mathematical objects such as
sets, semigroups and bisemigroups. Intermediate language terms are reified versions
of these mathematical objects. In Section 4.5.3 we show how to give meaning to IRL
terms by using a semantic evaluation function ~ � to translate from IRL terms into D.

57

4. Semantic domain

RAML IRL C++

L M Compile

Figure 4.1: Relationship between the metalanguage (RAML), the intermediate lan-
guage (IRL) and the target language (C++).

RAML IRL C++

D

L M Compile

~ � ◦ L M ~ �

Figure 4.2: Use of the semantic domain D and semantic function ~ � to formally relate
the metalanguage (RAML) and the intermediate language (IRL).

We can therefore establish the semantics of RAML terms by composing the translation
function with the semantic evaluation function i.e. ~ � ◦ L M. Figure 4.2 illustrates these
relations.

Our use of a semantic domain has several benefits. Firstly, and perhaps most impor-
tantly, it permits a concise specification of the meaning of metalanguage terms. In
particular, the intermediate language can be given a semantics that is independent of
any particular compiler implementation or target language. This reduces the scope
for error during implementation of a compiler for the language. Secondly, in order to
reason about the algebraic properties of metalanguage terms, it is necessary to have an
algebraic semantics. The semantic domain allows the semantics to be given explicitly.

In this particular chapter we describe the intermediate language IRL1 and domain D1.
Terms from the restricted metalanguage RAML1 of Chapter 5 are translated into IRL1.
Then, in Chapter 7 we describe the extended intermediate language IRL2 and domain
D2. These are a strict superset of the previous, and are used for assigning a meaning to
the extended metalanguage RAML2.

4.2 Basic definitions

4.2.1 Sets

In this section we define the notation that we use for representing sets. We denote the
one element set {1} by 1, relying upon context to distinguish between the set and the
element. Similarly, we denote the two element set {>, ⊥} by 2. Informally, the symbol
> corresponds to the value ‘true’ whilst the symbol ⊥ corresponds to the value ‘false’.

58

4. Semantic domain

Description Notation Definition
Unit 1 {1}
Booleans 2 {>, ⊥}

Integers Z {. . . , −2, −1, 0, 1, 2, . . .}
Non-negative integers N0 {0, 1, 2, . . .}
Positive integers N1 {1, 2, . . .}
Integer range [n ..m] {n, n + 1, . . . , m}
Strings S∗ {s1 . . . sn | si ∈ S}
Sets P(S) {S′ | S′ ⊆ S}
Lists L(S) {[s1, . . . , sn] | n ∈N ∧ si ∈ S}
Simple lists S(S) {[s1, . . . , sn] ∈ L(S) | si = s j ⇒ i = j}

Figure 4.3: Notation for sets

The symbols Z, N0 and N1 correspond to the usual subsets of the integers. We use the
notation [n ..m] to denote integer ranges between n and m, with the requirement that
n ≤ m.

For a set S, denote the set of finite strings over S by S∗. Denote the set of finite subsets
of S by P(S). Let L(S) denote the set of finite lists with elements from S. Finally, let a
simple list be a list that contains no duplicate elements. Denote the set of finite, simple
lists with elements from S by S(S). We summarise this notation in Figure 4.3. Note
that for a list X = [x1, . . . , xn], we write |X| = n to denote the length of the list, and
xi ∈ X ⇐⇒ 1 ≤ i ≤ n to denote the set membership predicate.

We now define the disjoint union construction, which is used to combine sets whilst
maintaining the identity of the originating set for each element. Let I = {i1, . . . , in} be
an index set. For sets Si1 , . . . , Sin , define the disjoint union Si1 + · · · + Sin as

({i1} × Si1) ∪ · · · ∪ ({in} × Sin)

In the case where there are two non-indexed sets S and T, define the disjoint union
S + T as

({inl} × S) ∪ ({inr} × T).

The implicit indices ‘inl’ and ‘inr’ are mnemonics for ‘in left’ and ‘in right’, representing
whether an element comes from the left set (S) or the right set (T) respectively.

4.2.2 Errors

Suppose that we have a binary operator ⊕ ∈ S × S→ 1 + S. For our purposes, we shall
interpret the output value inl(1) as an error condition, such as a bounded list exceeding
its maximum permitted length (here, ⊕ might be the list append operator). We now

59

4. Semantic domain

modify this operator so that it can additionally handle the error as an input, directly
propagating it to the output. Define the lifted operator ⊕̂ ∈ (1 + S) × (1 + S)→ 1 + S as

inr(x) ⊕̂ inr(y) = x ⊕ y
inl(1) ⊕̂ = inl(1)

⊕̂ inl(1) = inl(1).

The lifted operator has the infinity inl(1) as required, but otherwise behaves as the
original operator for values in S. Providing that the lifted operator is associative,
then the structure (1 + S, ⊕̂) forms a semigroup. The lifting construction provides a
convenient manner in which to separate the definition of the computational behaviour
of the operator from its input error handling. As an aside, this construction is analogous
to the bind operation in the ‘Maybe’ monad of the Haskell [96] functional programming
language.

4.3 Semigroups

In this section we define the semigroups in D1. We describe two kinds of objects: base
algebras and constructors. Base algebras are atomic objects (in this case, semigroups)
that cannot be decomposed, whilst constructors allow existing algebras to be combined
to generate new algebras (again, in this case, semigroups).

4.3.1 Base semigroups

Conjunction and disjunction Define the conjunctive semigroup as (2, ∧) and the dis-
junctive semigroup as (2, ∨), where the binary operators ∧ and ∨ are the usual boolean
conjunction and disjunction operators respectively.

Minimum and maximum Let S ⊆ Z. Define the minimum and maximum semigroups
over S as (S, min) and (S, max) respectively, where min and max are the usual minimum
and maximum binary operators

Addition and multiplication Suppose that S is one of N0, N1 or Z. Define the
additive and multiplicative semigroups as (N, +) and (N, ×), where + and × are the
usual addition and multiplication operators. Now suppose that S is the set [n ..m]. We
face the problem that in general S is not closed under addition and multiplication. That
is, for s1, s2 ∈ [n ..m], it is possible that s1 + s2 < [n ..m]. We address this problem by
instead generating the error 1 in those situations where the result is not a member of
[n ..m]. That is, we define the bounded addition operator + ∈ S × S→ 1 + S as

s1 + s2 =

 (inr, s1 + s2) n ≤ (s1 + s2) ≤ m
(inl(1) otherwise,

60

4. Semantic domain

where the additions on the right of the definition are the usual ‘platonic’ versions. We
lift this operator to a semigroup as (1 + S, +̂). Define bounded multiplication similarly.

Set union and intersection Let S be a set. Define the union and intersection semigroups
as (P(S), ∪) and (P(S), ∩), where ∪ and ∩ are the usual set union and intersection
operators.

List append Let S be a set. Let s1, s2 ∈ L(S) with s1 = [s1,1, . . . , sm,1] and s2 =

[s1,2, . . . , sn,2]. Define the list append operator as

s1 @ s2 = [s1,1, . . . , sm,1] @ [s1,2, . . . , sn,2]
= [s1,1, . . . , sm,1, s1,2, . . . , sn,2].

Using this operator, define the list append semigroup over S as (L(S), @). We now
turn to the append operation over simple lists s1, s2 ∈ S(T). We close the set under the
append operation by generating an error if there is a duplicate element. That is, define
the overloaded operator @ ∈ S(S) × S(S)→ 1 + S(S) as

s1 @ s2 =

 inr(s1 @ s2) s1 ∩ s2 = ∅

inl(1) otherwise,

where the appends on the right of the definition are the usual platonic versions. Then
define the list append semigroup over S as (1 + S(S), @̂).

Left and right Let S be a set. Define the left semigroup as (S, left), where for s1, s2 ∈ S,
left(s1, s2) = s1. Define the right semigroup as (S, right), where right(s1, s2) = s2.

4.3.2 Semigroup constructors

Lexicographic list Suppose that T is L(S), with S = (S, ⊕) a selective semigroup. For
t1, t2 ∈ T, with t1 = [t1,1, . . . , tm,1], t2 = [t1,2, . . . , tn,2] and k = min(m, n), define the
operator

t1 ~ t2 =

t1 t1 = t2

t1 ∃i ∈ {1 .. k}.∀ j < i. t j,1 = t j,2 ∧ ti,1 = ti,1 ⊕ ti,2 , ti,2

t2 ∃i ∈ {1 .. k}.∀ j < i. t j,1 = t j,2 ∧ ti,1 , ti,1 ⊕ ti,2 = ti,2

t1 ∀i ∈ {1 .. k}. ti,1 = ti,2 ∧ |t1| < |t2|

t2 ∀i ∈ {1 .. k}. ti,1 = ti,2 ∧ |t2| < |t1|.

This operator selects the list that is lexicographically minimal according to S. We form
a semigroup as (~, T). Now suppose that T is S(S). In this case, we close T by adding
the error value 1 in the usual manner.

Alpha and omega Let S = (S, ⊕S) be a semigroup. We show how to lift the semigroup
S to operate over the set 1 + S. We can either treat the value inl(1) as an identity or as

61

4. Semantic domain

an infinity. For the former, define the semigroup α(S) = (1 + S, ⊕), where

inr(s1) ⊕ inr(s2) = inr(s1 ⊕S s2)
inl(1) ⊕ inr(s2) = inr(s2)

inr(s1) ⊕ inl(1) = inr(s1)
inl(1) ⊕ inl(1) = inl(1).

For the latter, define the semigroup ω(S) = (1 + S, ⊕), where

inr(s1) ⊕ inr(s2) = inr(s1 ⊕S s2)
inl(1) ⊕ = inl(1)

⊕ inl(1) = inl(1).

These constructors are useful when defining bisemigroups in which one of the operators
can produce an error. They allow the other operator to be lifted to accommodate the
error, either treating it as an identity or as an infinity.

Direct product Let S = (S, ⊕S) and T = (T, ⊕T) be semigroups. Define the direct product
of S and T as S × T = (S × T, ⊕S×T), where for (s1, t1), (s2, t2) ∈ S × T,

(s1, t1) ⊕S×T (s2, t2) = (s1 ⊕S s2, t1 ⊕T t2)

This semigroup is used for modelling paired, yet independent computations. Note that
we can extend this operation to the n-ary case in the obvious manner.

Lexicographic product Let S = (S, ⊕S) and T = (T, ⊕T) be semigroups, with both
selective. Define the lexicographic product of S and T as S ~× T = (S × T, ⊕S~×T), where for
(s1, t1), (s2, t2) ∈ S × T,

(s1, t1) ⊕S~×T (s2, t2) =

(s1, t1 ⊕T t2) s1 = s2

(s1, t1) s1 = s1 ⊕S s2 , s2

(s2, t2) s2 , s1 ⊕S s2 = s2.

This semigroup is described in more detail in [17]. It is used for modelling ordered
choice; when combining values, priority is given to the S component. The T operator
is only used if there is a ‘tie’ in the S component. Again, we can extend this operation
to the n-ary case in the obvious manner.

Disjoint union Suppose that we have a collection of semigroups S1, . . . ,Sn with
Si = (Si, ⊕i). Let S = S1 + · · · + Sn. Define the operator ⊕ ∈ S × S→ 1 + S as

(li, x) ⊕ (l j, y) =

 inr(li, x ⊕i y) i = j
inl(1) otherwise.

Finally, lift this operator to obtain the disjoint union semigroup S1 + · · ·+ Sn = (1 + S, ⊕̂).
The disjoint union semigroup is used to model situations where there may be several
different types of values (such as metrics that are either internal or external to an AS).
If we attempt to combine values of different types, then it is necessary to generate an
error, as above.

62

4. Semantic domain

4.3.3 Properties

Recall that we define a selection of algebraic properties for semigroups in Figure 2.10(a).
It is straightforward to calculate such properties for the base semigroups. We list a
number of base semigroups and their associated properties at the end of this chapter,
in Figure 4.9. We also require rules to specify when properties hold of constructed
semigroups. For example, suppose that we have semigroups S = (S, ⊕) and T = (T, ⊕).
The rule for commutativity of the semigroup S × T is given as

(S × T) ⇐⇒ (S) ∧ (T).

Therefore, in order for the direct product semigroup S × T to be commutative, it is
necessary and sufficient for both S and T to be commutative.

Note that it is desirable to have ‘if and only if’ rules. That is, if a property does not
hold of a constructed semigroup, then it should be possible to tell why this is the
case. The direct product commutativity rule is an example of such a rule; if it is not
commutative, then we know that at least one of the argument semigroups lacks the
necessary commutativity property. In general, such information is useful for finding
alternative semigroups in which the required properties do hold.

Currently, we do not know ‘if and only if‘ rules for all constructions. Discovering and
verifying such property rules is an area of active research. Early work suggests that
some of this process may be amenable to automated reasoning.

4.4 Bisemigroups

In this section we define the bisemigroups in D1. Analogously to semigroups, we define
the base bisemigroups and then the bisemigroup constructors.

4.4.1 Base bisemigroups

And-or Define the semigroup comprising the boolean conjunction and disjunction
operators as (2, ∧, ∨).

Max-min Let S be one of Z, N0, N1 or [n ..m]. Define the bisemigroup comprising the
maximum and minimum operators over S as (S, max, min).

Min-plus Let S be one of Z, N0, N1. Define the semigroup comprising the minimum
and addition operators over S as (N, min, +). Now suppose that S is [n ..m]. In this
situation it is possible to obtain an error 1 from the addition operator, and therefore
we must lift the min operator to treat this value as an identity. That is, define the
bisemigroup as (1 + S, α(min), +̂).

63

4. Semantic domain

Min-times Let S be one ofZ, N0, N1. Define the semigroup comprising the minimum
and multiplication operators over S as (N, min, ×). Now suppose that S is [n ..m]. In
common with the min-plus bisemigroup, we must lift the min operator to treat the
error value 1 as an identity. That is, define the bisemigroup as (1 + S, α(min), ×̂).

Union-intersection Let S be a set. Define the bisemigroup comprising the union and
intersection operators over P(S) as (P(S), ∪, ∩).

4.4.2 Bisemigroup constructors

Lexicographic list Let T be the set L(S), with S = (S, ⊕) a selective semigroup. Define
the lexicographic list bisemigroup as (S, ~, @). Now suppose that T is S(S). In this case,
the append operator must be lifted to treat the error value 1 as an infinity i.e. we have
obtained the bisemigroup (1 + T, ~, ω(@)).

Alpha/omega Let S = (S, ⊕, ⊗) be a bisemigroup. Define the bisemigroup that lifts S
to add 1 as the identity for ⊕ and the infinity for ⊗ as (1 + S, α(⊕), ω(⊗)).

Omega/alpha Let S = (S, ⊕, ⊗) be a bisemigroup. Similarly to the previous construc-
tions, define the bisemigroup that lifts S to add 1 as the infinity for ⊕ and the identity
for ⊗ as (1 + S, ω(⊕), α(⊗)).

Direct product Let S = (S, ⊕S, ⊗S) and T = (T, ⊕T, ⊗T) be bisemigroups. Define the
direct product of S and T as

S × T = (S × T, ⊕S×T, ⊗S×T),

Note that we can extend this operation to the n-ary case in the obvious manner.

Lexicographic product Let S = (S, ⊕S, ⊗S) and T = (T, ⊕T, ⊗T) be bisemigroups, with
the additive components both selective. Define the lexicographic product of S and T as

S ~× T = (S × T, ⊕S~×T, ⊗S×T),

Again, note that we can extend this operation to the n-ary case in the obvious manner.

Disjoint union Suppose that we have a collection of bisemigroups Sl1 , . . . ,Sln with
Sli = (Sli , ⊕li , ⊗li). Let S = Sl1 + · · · + Sln . Define the operator ⊕ ∈ S × S→ 1 + S as

(li, x) ⊕ (l j, y) =

 inr(li, x ⊕i y) i = j
inl(1) otherwise.

Define the operator ⊗ ∈ S × S → 1 + S similarly, mutatis mutandis. Finally, lift this
operator to obtain the disjoint union bisemigroup S1 + · · · + Sn = (1 + S, ⊕̂, ⊗̂).

64

4. Semantic domain

4.4.3 Properties

Recall that we define a number of algebraic properties of bisemigroups in Figure 2.10(b).
It is relatively straightforward to calculate such properties for the base bisemigroups.
In common with semigroups, we list a number of bisemigroups and their associated
properties at the end of this chapter, in Figure 4.10.

The rules for calculating properties of constructed bisemigroups are more ‘interesting’
than those for semigroups. This is due to the presence of properties governing the
interaction of the additive and multiplicative components of bisemigroups. As an
example, we briefly describe the rule for distributivity of the bisemigroup lexicographic
product. This definition is from [17]. Suppose that we have two bisemigroups, S =

(S, ⊕S, ⊗S) and T = (T, ⊕T, ⊗T). The rule for left-distribution of the bisemigroup S ~× T
is given as:

 (S ~× T) ⇐⇒
 (S) ∧ (T) ∧ ((S, ⊗S) ∨ (T, ⊗T))

That is, we require both S and T to be distributive, and either the multiplicative com-
ponent of S to be cancelative or else the multiplicative component of T to be constant.
Note that this is an ‘if and only if‘ rule, and therefore if S ~× T is not distributive, then
we can precisely determine why this is the case.

We now illustrate the application of this rule. Consider the pair of bisemigroups
S = (N0, min, +) and T = (N0, max, min). We have that S ~× T is left-distributive
because both S and T are left-distributive, and S is left-cancelative. However, T ~× S is
not left-distributive, because it is not that case that either T is left-cancelative or S is
left-constant. The properties of these semigroups and bisemigroups are given at the
end of this chapter, in Figures 4.9 and 4.10.

4.5 Intermediate language

In this section we define the intermediate language, IRL1. This is a language based
upon the semigroup and bisemigroup constructions from Sections 4.3 and 4.4. We
translate routing language specifications written in our metalanguage RAML1 (Chap-
ter 5) into terms in IRL1. As previously discussed, the intermediate language both gives
a clear semantics to the metalanguage and also acts as a bridge between the high-level
metalanguage constructions and the lower-level C++ output of the compiler.

We commence, in Section 4.5.1, by giving the lexical conventions that we use to define
IRL1. We use the same conventions when defining the metalanguage. Next, in Sec-
tion 4.5.2, we define the syntax of IRL1. Finally, in Section 4.5.3, we assign a semantics
to IRL1. This maps syntax from IRL1 into the semantic domain D1.

65

4. Semantic domain

l F A. . . Z | a. . . z (letter)
d F 0. . . 9 (digit)
c F l | d | | ! | # | $ | % | & | ’ | (|) | * | + | , | - | . | / (character)

| : | ; | < | = | > | ? | @ | [| \ |] | ˆ | _ | ‘ | { | | | } | ˜

n, m F [-] d { d } (integer)
s F "{c}" (string)
i F (_ | l) { - | _ | l | d } (identifier)

Figure 4.4: Syntax of basic lexical classes

4.5.1 Lexical conventions

In this section we briefly explain the lexical conventions that we use to define the syntax
of IRL1. Note that these conventions are based upon those from [97]. Terminal symbols
are written in typewriter font. For example, the unit type is written unit. Non-terminal
symbols are written in italicised font. For example, the syntactic category of value is
written v. Braces {. . . }denote zero or more repetitions of the enclosed symbols, whist the
variant {. . . }+ denotes one or more repetitions. Square brackets [. . .] denote optional
symbols. Parentheses (. . .) are used for grouping. We define some basic syntactic
classes in Figure 4.4. These grammars are written in Backus-Naur Form (BNF). Note
that characters c are drawn from the printable subset of ASCII, with double quotation
marks removed.

4.5.2 Syntax

The intermediate language contains types, values, semigroups and bisemigroups. We
list the syntax of types ty and values v in Figure 4.5. The language contains scalar
values, such as integers and strings, and vector values such as lists and sets. Formally,
as we show in the next section, types correspond to sets whilst values are elements of
these sets.

We now turn to the computational content of the language: seimgroups and bisemi-
groups. We list the syntax of semigroups and bisemigroups in Figure 4.6. Syntactically,
semigroups sg comprise pairs (ty, bo), where bo is a binary operator over that type.
For example, (int, plus) is a semigroup. Bisemigroups bsg are similar to semigroups,
but contain an additional binary operator. They are written as triples (ty, bo, bo). An
example of a bisemigroup is (int, min, plus).

4.5.3 Semantics

It is relatively straightforward to assign a semantics to IRL1. This is because the
language is a reified version of the algebraic constructions given in the earlier parts of

66

4. Semantic domain

ty F (type)
| bool (boolean)
| ty num+ (extended numeric)
| string (string)
| set(ty) (set)
| list(ty) (list)
| list_simp(ty) (simple list)
| rec((i1,ty1),. . . ,(in,tyn)) (product)
| disj_union((i1,ty1),. . . ,(in,tyn)) (disjoint union)
| add_const(i,ty) (add constant)

ty num+ F (extended numeric)
| ty num (numeric)
| int_bound(n,m) (bounded integer)

ty num F (numeric)
| int (integer)
| int_non_neg (non-negative integer)
| int_pos (positive integer)

v F (value)
| unit (unit)
| true | false (booleans)
| int(n) (integer)
| string(s) (string)
| {v1,. . . ,vn} (set)
| [v1,. . . ,vn] (list)
| (v1,. . . ,vn) (product)
| inj(i,v) (disjoint union)

Figure 4.5: Syntax of IRL1 types and values

this chapter. We assign a semantics to IRL1using a denotational approach [98], whereby
each syntactic category is embedded into a semantic domain. In our case, the semantic
domain is D1, and for a given syntactic construct x in IRL1, we write ~x� to denote the
corresponding object in D1. This approach contrasts with the operational approach [99],
whereby the meaning of programs is specified using rules over the syntax.

We give the denotations of types and values in Figures 4.7. Types correspond to sets,
whilst values are members of sets. We say that a value v is of type ty if and only if
~v� ∈ ~ty�. We also say that a type ty1 is a sub-type of ty2 if and only if ~ty1� ⊆ ~ty2�. For
example, int_pos is a sub-type of int. Due to the presence of sub-types, a value can
be of multiple types. For example, the integer 14 is of type int_pos and int. This does
not cause any difficulties, because we are only interested in the type checking problem
whereby we verify whether a value is of a particular type. This contrasts with the type

67

4. Semantic domain

bo F (binary operator)
| and (boolean conjunction)
| or (boolean disjunction)
| min (integer minimisation)
| max (integer maximisation)
| plus (integer addition)
| times (integer multiplication)
| union (set union)
| inter (set intersection)
| app (list append)
| list_lex(bo) (lexicographic list)
| left (left)
| right (right)
| alpha(bo) (alpha)
| omega(bo) (omega)
| dir_prod(bo1,. . . ,bon) (direct product)
| lex_prod(bo1,,. . . bon) (lexicographic product)
| disj_union(bo1,,. . . bon) (disjoint union)

sg F (ty, bo) (semigroup)

bsg F (ty, bo, bo) (bisemigroup)

Figure 4.6: Syntax of IRL1 semigroups and bisemigroups

inference problem, where we must synthesise the type of a value.

The denotations of (syntactic) semigroups are given in Figure 4.8. The denotation
of a syntactic semigroup (ty, bo) is a semigroup (S, ⊕). The denotation of syntactic
bisemigroup (ty, bo1, bo2) is obtained by taking the denotations (S1, ⊕) = ~(ty, bo1)�

and (S2, ⊗) = ~(ty, bo2)�, and then combining to form the bisemigroup (S, ⊕, ⊗) with
S = S1 = S2.

We note that the meaning of a binary operator bo is dependent upon the type ty that it
operates upon. This is known as overloading. For example, the semigroups (int, plus)
and (disj_union(unit, int_bound(1,16)), plus) both contain the identical syntac-
tic operator plus, yet this operator has different denotations for each semigroup. We
chose to overload operators, instead of having multiple different versions, to minimise
the size of the intermediate language.

68

4. Semantic domain

Type ty Denotation ~ty�
unit 1
bool 2
int N

int_non_neg N0

int_pos N1

int_bound(n,m) [n ..m]
string c∗

set(ty) P(~ty�)
list(ty) L(~ty�)
list_simp(ty) S(~ty�)
rec((i1,ty1),. . . ,(in,tyn)) ~ty1� × · · · × ~tyn�

disj_union((i1,ty1),. . . ,(in,tyn)) ~ty1� + · · · + ~tyn�

add_const(i,ty) 1 + ~ty�

Value v Denotation ~v�
unit 1
true >

false ⊥

int(n) n
string(s) s
{v1,. . . ,vn} {~v1�, . . . , ~vn�}

[v1,. . . ,vn] [~v1�, . . . , ~vn�]
(v1,. . . ,vn) (~v1�, . . . , ~vn�)
inj(i,v) (i, ~v�)

Figure 4.7: Denotations of IRL1 types and values

69

4. Semantic domain

Semigroup sg Denotation ~sg�
(bool, and) (2, ∧)
(bool, or) (2, ∨)
(ty num+, min) (~ty num+�, min)
(ty num+, max) (~ty num+�, max)
(ty num, plus) (~ty num�, +)
(disj_union(unit, int_bound(n,m)), plus) (1 + [n ..m], +̂)
(ty num, times) (~ty num�, ×)
(disj_union(unit, int_bound(n,m)), times) (1 + [n ..m], ×̂)
(set(ty), union) (P(~ty�), ∪)
(set(ty), inter) (P(~ty�), ∩)
(list(ty), app) (L(~ty�), @)
(disj_union(unit, list_simp(ty)), app) (1 + S(~ty�), @̂)
(list(ty), list_lex) (L(~ty�), ~)
(ty, left) (~ty�, left)
(ty, right) (~ty�, right)
(disj_union(unit, ty), alpha(bo)) (1 + S, α(⊕)) where (S, ⊕) = ~(ty, bo)�
(disj_union(unit, ty), omega(bo)) (1 + S, ω(⊕)) where (S, ⊕) = ~(ty, bo)�
(prod(ty1,. . . ,tyn), dir_prod(ty1,. . . ,tyn)) S1 × · · · × Sn where (Si, ⊕i) = ~(tyi, boi)�

(prod(ty1,. . . ,tyn), lex_prod(ty1,. . . ,tyn)) S1 ~× · · · ~× Sn where (Si, ⊕i) = ~(tyi, boi)�

(disj_union(unit, union(ty1,. . . ,tyn)), S1 + · · · + Sn where (Si, ⊕i) = ~(tyi, boi)�

disj_union(bo1,. . . ,bon))

Figure 4.8: Denotations of IRL1semigroups

70

4.Sem
antic

dom
ain

Semigroup

(B, ∧) X X X × × × × true false
(B, ∨) X X X × × × × false true
(N0, min) X X X × × × × × 0
(N0, max) X X X × × × × 0 ×

([n ..m], min) X X X × × × × m n
([n ..m], max) X X X × × × × n m
(Z, +) X × × X X × × 0 ×

(Z, ×) X × × X X × × × 0
(P(S), ∪) X × X × × × × ∅ S
(P(S), ∩) X × X × × × × S ∅

(L(S), @) × × × X X × × [] ×

(S, left) × X X × X X × × ×

(S, right) × X X X × × X × ×

Figure 4.9: Algebraic properties of base D1 semigroups

Bisemigroup

(B, ∧, ∨) X X X X true false
(N0, max, min) X X × × 0 ×

(N0, min, +) X X X X × 0
(1 + [n ..m], αc(min), +̂), n > 0 X X X X inl(1) ×

(1 + [n ..m], αc(min), +̂), n = 0 X X X X inl(1) inr(0)
(P(S), ∪, ∩) X X X X ∅ S

Figure 4.10: Algebraic properties of base D1 bisemigroups

71

C 5

RAML1: Mini metalanguage

In this chapter we describe RAML1, the mini metalanguage. This is a restricted version
of the extended metalanguage, RAML2, that we will describe in Chapter 7. RAML1 can
be used to define routing algebras based upon semigroups and bisemigroups, whereas
RAML2 extends RAML1 to additionally include preorders and transforms. We have
separated the language into restricted and extended versions purely to simplify the
presentation.

We commence this chapter with an example to give an intuition for the metalanguage
(§ 5.1). We then formally describe the metalanguage (§ 5.2). Finally, we give a translation
into the intermediate language (§ 5.3). This both indirectly defines the semantics of the
metalanguage and also describes the basis from which C++ code is generated.

5.1 Example

Prior to describing RAML1, we give an example routing language specification written
in the metalanguage. Our intention is to give a guiding intuition for the language
without overwhelming the reader with the technical details.

Suppose that we wish to compute ‘shortest-paths’. That is, links are weighted with
non-negative integer values, and we add these weights together to obtain path weights,
with smaller weights preferred. Recall from Section 2.6 that we can algebraically
model this structure using the min-plus semiring. In RAML1, we write this struc-
ture as min_plus(int_non_neg). The type argument int_non_neg establishes that the
minimisation and addition is occurring over the non-negative subset of the integers.

Now suppose that we wish to tie-break upon bandwidth. That is, given a pair of shortest
paths, we wish to use a bandwidth metric to decide between them. We compute
bandwidth by again labelling arcs with non-negative integer values. However, the
weight of a path is now the ‘bottle-neck’ (minimum) arc weight along that path, and

72

5. RAML1: Mini metalanguage

we prefer larger values. We algebraically model this structure using the max-min
semiring. We write this structure in RAML1 as max_min(int_non_neg).

Finally, we wish to avoid transient looping behaviour when we use this routing lan-
guage with a vectoring algorithm such as distributed Bellman-Ford. For this, we use
a construction similar to the BGP AS path attribute whereby integer router identi-
fiers are added to a path structure. We prevent looping by imposing the constraint
that the path must contain no duplicate node identifiers. We write this in RAML1 as
list_lex_app_simp(NOTSIMP, min(int_pos)).

We combine the three structures using the lexicographic product construction. We
write this in RAML1 as

lex_prod(dist : min_plus(int_non_neg),

bw : max_min(int_non_neg),

path : list_lex_app_simp(NOTSIMP, min(int_pos)))

The identifiers dist, bw and path are field labels. Labels are syntactic sugar to convey
the meaning of particular values within a field, hence clarifying configuration.

Metrics and policy comprise triples <dist=n, bw=m, path=[. . .]>, where n and m
are non-negative integers, and the path contains a sequence of comma-separated in-
tegers. We now illustrate policy application and metric summarisation. The metric
<dist=2, bw=10, path=[3,4]> is more preferred than <dist=5, bw=20, path=[5]>
because the former has a lower distance component. Setting the two distant compo-
nents to be identical, we have that the metric <dist=5, bw=10, path=[3,4]> is less
preferred than <dist=5, bw=20, path=[5]>. This is because the latter metric has a
larger bandwidth component.

We now turn to the application of policy to metrics. Consider the application of the
policy <dist=3, bw=5, path=[1]> to the metric <dist=2, bw=10, path=[3,4]>. This
results in the metric <dist=5, bw=5, path=[1,3,4]>. That is, distances are added,
bandwidths are minimised and paths are appended.

Using rules similar to those presented in Chapter 2, it is straightforward to show that the
corresponding bisemigroup is both increasing and distributive. Therefore this routing
language can be combined with either a vectoring or a link-state/Dijkstra algorithm.
Furthermore, due to distributivity, routing solutions from a vectoring algorithm will be
globally optimal. Now consider exchanging the order of the bandwidth and distance
components to obtain the following routing language specification:

lex_prod(bw : max_min(int_non_neg),

dist : min_plus(int_non_neg),

path : list_lex_app_simp(NOTSIMP, min(int_pos)))

73

5. RAML1: Mini metalanguage

We can automatically infer that the corresponding bisemigroup is increasing, but not
distributive. Therefore the routing language can only be combined with a vectoring
algorithm, but not a link-state Dijkstra algorithm. Furthermore, solutions will only be
locally optimal in general.

5.2 Metalanguage

In this section we define RAML1. We first give a brief overview of the language, before
giving its full definition.

The language is declarative, meaning that terms with the language abstractly specify
intended behaviours without defining the particular implementation technique. Tasks
such as the selection of appropriate data-structures and algorithms are delegated to
the compiler. This separation from the implementation details increases the clarity
of the language and indeed allows the compiler a large degree of choice for efficient
implementation. RAML1 is also statically typed. This means that it is possible to
syntactically eliminate a large class of errors at compile-time that would otherwise
manifest themselves at runtime [99].

We define RAML1 in two steps. Firstly, we define its syntax. Whilst this provides
sufficient information for writing a routing language specification, it does not tell us
what such a specification means. Therefore, the second component of the RAML1

definition is a translation into the intermediate language IRL1. As discussed, IRL1 has
a formal semantics, and in this way we assign meaning to the metalanguage.

We commence by defining the syntax of types and their associated values (§ 5.2.1).
Note that we reuse the lexical conventions from Section 4.5.1. Next, we define the
computational component of the language: semigroups and bisemigroups (§ 5.2.2).
Finally, we give a translation from RAML1 into IRL1 (§ 5.3).

5.2.1 Types and values

In this section we define the object-level types and values of RAML1. Types specify the
permitted values that metrics and policy may take. Types are both explicitly written by
users and are also automatically inferred at compilation. Semantically, types comprise
sets of values. We note that the types described in this section occur within routing
language specifications and are distinct from the types of specifications. Additionally,
values do not occur within specifications, but are instead manipulated by the code
generated from specifications. Therefore a rigorous definition of values is still essential
for defining the language.

74

5. RAML1: Mini metalanguage

ty F (type)
| unit (unit)
| bool (booleans)
| int (integers)
| int_non_neg (non-negative integers)
| int_pos (positive integers)
| int_bound(n,m) (bounded integers)
| string (strings)
| set(ty) (sets)
| list(ty) (lists)
| list_simp(ty) (simple lists)
| rec(i1:ty1,. . . ,in:tyn) (records)
| disj_union(i1:ty1,. . . ,in:tyn) (disjoint unions)
| add_const(i,ty) (constants)

v F (value)
| unit (unit)
| true | false (boolean)
| n (integer)
| s (string)
| [v1,. . . ,vn] (list)
| {v1,. . . ,vn} (set)
| <i1 = v1,. . . ,in = vn> (record)
| inj(i, v) (disjoint union)
| i (constant)

Figure 5.1: Syntax of RAML1 types and values

RAML1 contains scalar values such as integers and strings. The former is useful
for representing values such as distance and bandwidth, whilst the latter is used for
assigning names to objects such as routers etc. The language also contains vector
values such as lists, sets and records (labelled n-ary tuples). Such values are essential
for representing more complicated data-structures. For example, lists may be used to
represent structures similar to AS paths.

In common with the intermediate language, a value may be a member of more
than one type. For example, the type int corresponds the set of integers Z whilst
int_bound(n,m) denotes the finite subset [n ..m]. Formally, int_bound(n,m) is a
sub-type of int. Although the inclusion of sub-types increases the complexity of the
language, this facility allows more constraints to be encoded within protocol specifica-
tions. In some cases, it is only possible to derive the required correctness properties if a
restricted version of a type is used. For example, it is necessary to exclude the negative
integers from the min-plus algebra in order to obtain an increasing algebra.

75

5. RAML1: Mini metalanguage

We give the syntax of RAML1 types and values in Figure 5.1. We now describe the
various types and values in more detail.

Unit The unit type unit contains a single constant, also written as unit. Note that this
type carries no information. Instead, it is often used within a disjoint union to represent
an error case.

Booleans The boolean type bool contains two constants, written as true and false.

Integers There are four integral types, each corresponding to subsets of the integers.
The int type corresponds to the set of all integers, whilst the int_non_neg and int_pos
types correspond to the non-negative and positive subsets of the integers respectively.
Finally, the int_bound(n,m) type denotes a finite subset of integers in the range [n, m],
with n ≤ m. Note the use of the brackets for parameters. Integer values are written in
their base-10 representation, such as 16 or -4.

Strings The string type string comprises all finite sequences of characters. String
values are written surrounded by double quotations, such as "foo".

Lists The list type list(ty) denotes finite but unbounded lists of elements from ty.
List values are written as sequences of comma-separated values, surrounded by square
brackets. For example, the two-element list, of which the first element is the integer 16
and the second element is the integer -4, is written as [16, -4].

Sets The set type set(ty) denotes finite but unbounded sets of elements from ty. Set
values are written as sequences of comma-separated values, surrounded by braces.
For example, the two-element set comprising the integers 16 and -4 could be written as
{16, -4}, {-4, 16} or even {16, -4, -4}.

Records Records are essentially labelled products. The label names may be used to
convey additional semantic information within specifications. For types ty1, . . . , tyn

and distinct labels i1, . . . , in, we write the type rec(i1:ty1,. . . ,in:tyn) for the record
with field i1 of type ty1 etc. Syntactically, record values are written as sequences of
assignments of values to labels, surrounded by angle brackets. For example, the record
with label name assigned the string "foo" and dist assigned the integer 45 is written
as <name="foo", dist=16>. This has the type rec(name:string, dist:int).

Disjoint unions The disjoint union type is used to represent collections of values of
different types. For types ty1, . . . , tyn and distinct labels i1, . . . , in, we write the type
disj_union(i1:ty1,. . . ,in:tyn) to denote n-way disjoint union, with tag i1 correspond-
ing to a value of type ty1 etc. Disjoint union values correspond to pairs of a label
and a value. They are written as an application of the inj (inject) function to a pair
of a label and a value. For example, the integer 16 labelled with dist is written as
inj(dist, 16).

Constants For a type ty, and a constant i, the type add_const(i, ty) adds the constant i
to ty. This construction is syntactic sugar for the type disj_union(inl:i, inr:ty), with

76

5. RAML1: Mini metalanguage

the additional feature that value tags are omitted. This requires that no duplicate con-
stants are added. The value inj(inl, i) is written as i and inj(inr, v) is written as
v. For example, the values omega and 16 are both of the type add_const(omega, int).

5.2.2 Semigroups and bisemigroups

In this section we define the ‘syntactic’ semigroups and bisemigroups of RAML1. Semi-
groups and bisemigroups specify the computational behaviour of the language, defin-
ing how values are manipulated within routing protocols. For us, the values and types
are those from Section 5.2.1. Whereas the syntactic semigroups and bisemigroups have
implicit computational content, the ‘semantic’ versions in the intermediate language
have explicit types and operators that are amenable to code generation.

The semigroup and bisemigroup operators are similar to those from the intermediate
language. We specify the syntax of semigroups and bisemigroups in Figure 5.2. The
correspondence with IRL1 terms is fairly straightforward to infer, although it is formally
specified in Section 5.3.

We briefly discuss several representative examples of RAML1 semigroups. The and
semigroup corresponds to the usual boolean conjunction. The plus(ty num) semi-
group corresponds to integer addition over the numeric type ty num. The semigroup
plus_bound(i,n,m) is similar, but instead defines bounded arithmetic over the integer
range int_bound(n,m), generating the error constant i if the resultant value is out of
this range. The app_simp(i,ty) semigroup corresponds to the list append operation
lifted to operate over the type add_const(i, list_simp(ty)). The error constant i is
generated if there is a duplicate value in a list. The add_alpha(i, sg) semigroup lifts sg
to operate over the type add_const(i, ty), where ty is the type of sg. The resultant semi-
group treats the constant i as an identity value. Finally, the lex_prod(i1:sg1,. . . ,in:sgn)

semigroup corresponds to the n-ary semigroup lexicographic product.

Moving onto representative examples of RAML1 bisemigroups, the min_plus(ty num)
bisemigroup corresponds to integer minimisation and addition over the numeric type
ty num, as illustrated in our introductory example (§ 5.1). The min_plus_bound(i,n,m)
bisemigroup is similar, but instead defines bounded arithmetic over the integer range
int_bound(n,m) where i is an error constant. The twin(sg) bisemigroup defines the
bisemigroup where sg is used for both the additive and multiplicative semigroups.
The swap(bsg) bisemigroup simply replaces the additive semigroup of bsg with the
multiplicative semigroup, and vice versa. The list_lex_app_simp(i, sg) bisemi-
group lexicographically summarises simple lists using the sg semigroup, and com-
bines lists using the append operation. The error constant i is generated in the case
where duplicate list values occur. Again, this bisemigroup was illustrated earlier. The
add_alpha_omega(bsg) bisemigroup is similar to its semigroup counterparts, with the

77

5. RAML1: Mini metalanguage

sg F (semigroup)
| and (boolean conjunction)
| or (boolean disjunction)
| plus(ty num) (integer addition)
| plus_bound(i,n,m) (bounded integer addition)
| times(ty num) (integer multiplication)
| times_bound(i,n,m) (bounded integer multiplication)
| min(ty num+) (integer minimisation)
| max(ty num+) (integer maximisation)
| app(ty) (list append)
| app_simp(i,ty) (simple list append)
| union(ty) (set union)
| inter(ty) (set intersection)
| left(ty) (left)
| right(ty) (right)
| add_alpha(i,sg) (add alpha)
| add_omega(i,sg) (add omega)
| dir_prod(i1:sg1,. . . ,in:sgn) (direct product)
| lex_prod(i1:sg1,. . . ,in:sgn) (lexicographic product)
| disj_union(i,i1:sg1,. . . ,in:sgn) (disjoint union)

bsg F (bisemigroup)
| and_or (boolean conjunction/disjunction)
| min_plus(ty num) (integer minimisation/addition)
| min_plus_bound(i,n,m) (bounded integer minimisation/addition)
| min_times(ty num) (integer minimisation/multiplication)
| min_times_bound(i,n,m) (bounded integer minimisation/multiplication)
| max_min(ty num) (integer maximisation/minimisation)
| union_inter(ty) (set union/intersection)
| twin(bsg) (semigroup duplication)
| swap(bsg) (semigroup swapping)
| list_lex_app(bsg) (list lexicographic/append)
| list_lex_app_simp(i,bsg) (bounded list lexicographic/append)
| add_alpha_omega(i,bsg) (alpha/omega)
| dir_prod(i1:bsg1,. . . ,in:bsgn) (direct product)
| lex_prod(i1:bsg1,. . . ,in:bsgn) (lexicographic product)
| disj_union(i,i1:bsg1,. . . ,in:bsgn) (disjoint union)

Figure 5.2: Syntax of RAML1 semigroups and bisemigroups

78

5. RAML1: Mini metalanguage

exception that the constant i is an additive identity and multiplicative infinity. Finally,
the lex_prod(i1:bsg1,. . . ,in:bsgn) bisemigroup corresponds to the n-ary bisemigroup
lexicographic product.

5.3 Translation into IRL1

In this section we describe how to translate from RAML1 into IRL1. For each syntactic
category in RAML1, we define a translation function L M that maps into IRL1. Recall from
Chapter 4 that we can then use the semantic evaluation function ~ � to translate terms
from IRL1into the semantic domain D1 to obtain their meaning. Hence the meaning of
terms in RAML1 is obtained by the composition ~ � ◦ L M.

Figure 5.3 gives translations of values and types, whilst Figures 5.4 and 5.5 give transla-
tions for semigroups and bisemigroups respectively. The definitions of the translations
are straightforward, and therefore we do not further discuss the details.

We now return to the example from the beginning of the chapter:

lex_prod(dist : min_plus(int_non_neg),

bw : max_min(int_non_neg),

path : list_lex_app_simp(NOTSIMP, min(int_pos)))

Upon translation into IRL1, we obtain the following bisemigroup term:

(rec((dist, int_non_neg), (bw, int_non_neg),

(path, add_const(NOTSIMP, list_simp(int_pos)))),

lex_prod(min, max, list_lex(min)),

dir_prod(plus, min, app))

Hence we see that the underlying type is a ternary record rec(. . .). The additive
operator is a lexicographic product lex_prod(. . .), whilst the multiplicative operator
is direct productdir_prod(. . .). Each of these operators comprises three sub-operators,
corresponding to the operations upon each of the individual record fields.

The example illustrates how the translation into IRL1 exposes the computational content
that is implicit in RAML1 routing language specifications. From this stage it is now
much easier to generate executable C++ code.

79

5. RAML1: Mini metalanguage

Type ty Translation LtyM
unit unit

bool bool

int int

int_non_neg int_non_neg

int_pos int_pos

int_bound(n,m) int_bound(n,m)
string string

set(ty) set(LtyM)
list(ty) list(LtyM)
list_simp(ty) list_simp(LtyM)
rec(i1:ty1,. . . ,in:tyn) rec((i1,Lty1M),. . . ,(in,LtynM))
disj_union(i1:ty1,. . . ,in:tyn) disj_union((i1,Lty1M),. . . ,(in,LtynM))
add_const(i,ty) add_const(i,LtyM)

Value v Translation LvM
unit unit

true true

false false

n int(n)
s string(s)
[v1,. . . ,vn] [Lv1M,. . . ,LvnM]
{v1,. . . ,vn} {Lv1M,. . . ,LvnM}
<i1=v1,. . . ,in=vn> (Lv1M,. . . ,LvnM)
inj(i, v) inj(i, LvM)
i const(i)

Figure 5.3: Translations of RAML1 types and values into IRL1

80

5. RAML1: Mini metalanguage

Semigroup sg Translation LsgM
and (bool, and)

or (bool, or)

plus(ty num) (Lty numM, plus)
plus_bound(i,n,m) (add_const(i,int_bound(n,m)), plus)
times(ty num) (Lty numM, times)
times_bound(i,n,m) (add_const(i,int_bound(n,m)), times)
min(ty num+) (Lty num+M, min)
max(ty num+) (Lty num+M, max)
app(ty) (list(LtyM), app)
app_simp(i,ty) (add_const(i,list_simp(LtyM)), app)
union(ty) (set(LtyM), union)
inter(ty) (set(LtyM), inter)
left(ty) (LtyM, left)
right(ty) (LtyM, right)
add_alpha(i,sg) (add_const(i,ty), alpha(bo)), where (ty, bo) = LsgM
add_omega(i,sg) (add_const(i,ty), omega(bo)), where (ty, bo) = LsgM
dir_prod(i1:sg1,. . . ,in:sgn) (rec((i1,ty1),. . . ,(in,tyn)),

dir_prod(bo1,. . . ,bon)), where (tyi, boi) = LsgiM
lex_prod(i1:sg1,. . . ,in:sgn) (rec((i1,ty1),. . . ,(in,tyn)),

lex_prod(bo1,. . . ,bon)), where (tyi, boi) = LsgiM
disj_union(i,i1:sg1,. . . ,in:sgn) (add_const(i,disj_union((i1,ty1),. . . ,(in,tyn))),

disj_union(bo1,. . . ,bon)), where (tyi, boi) = LsgiM

Figure 5.4: Translations of RAML1 semigroups into IRL1

81

5. RAML1: Mini metalanguage

Bisemigroup bsg Translation LbsgM
and_or (bool, and, or)

min_plus(ty num) (Lty numM, min, plus)
min_plus_bound(i,n,m) (add_const(i,int_bound(n,m)), min, plus)
min_times(ty num) (Lty numM, min, times)
min_times_bound(i,n,m) (add_const(i,int_bound(n,m)), min, times)
max_min(ty num+) (Lty num+M, max, min)
union_inter(ty) (set(LtyM), union, inter)
twin(sg) (ty, bo, bo), where (ty, bo) = LsgM
swap(bsg) (ty, bo2, bo1), where (ty, bo1, bo2) = LbsgM
list_lex_app(sg) (list(LtyM), list_lex(bo), app),

where (ty, bo) = LsgM
list_lex_app_simp(i,sg) (add_const(i,list_simp(ty)),

list_lex(bo), app), where (ty, bo) = LsgM
add_alpha_omega(i,bsg) (add_const(i,ty), alpha(bo1), omega(bo2)),

where (ty, bo1, bo2) = LbsgM
dir_prod(i1:bsg1,. . . ,in:bsgn) (rec((i1,ty1),. . . ,(in,tyn)),

dir_prod(bo1,1,. . . ,bon,1),

dir_prod(bo1,2,. . . ,bon,2)),
where (tyi, boi,1, boi,2) = LbsgiM

lex_prod(i1:bsg1,. . . ,in:bsgn) (rec((i1,ty1),. . . ,(in,tyn)),

lex_prod(bo1,1,. . . ,bon,1),

dir_prod(bo1,2,. . . ,bon,2)),
where (tyi, boi,1, boi,2) = LbsgiM

disj_union(i,i1:bsg1,. . . ,in:bsgn) (add_const(i,disj_union((i1,ty1),. . . ,(in,tyn))),

disj_union(bo1,1,. . . ,bon,1),

disj_union(bo1,2,. . . ,bon,2)),
where (tyi, boi,1, boi,2) = LbsgiM

Figure 5.5: Translations of RAML1 bisemigroups into IRL1

82

C 6

Compilation

In Chapter 5, we described how to translate RAML1 routing language specifications into
IRL1 terms. In this chapter we describe compilation-proper, whereby IRL1 terms are
translated into executable code. Whilst both steps can be seen as a form of compilation,
we prefer to reserve the term for this last stage where actual low-level code is generated.
We commence by giving an overview of our approach to compilation (§ 6.1), before
describing the specifics of the compilation process (§ 6.2).

6.1 Overview

Recall the example RAML1 specification from Chapter 5:

lex_prod(dist : min_plus(int_non_neg),

bw : max_min(int_non_neg),

path : list_lex_app_simp(NOTSIMP, min(int_pos)))

We have already demonstrated how to translate such RAML1 specifications into our
intermediate language, IRL1. For example, we have shown that the preceding specifi-
cation is translated into the following IRL1 term:

(rec((dist, int_non_neg), (bw, int_non_neg),

(path, add_const(NOTSIMP, list_simp(int_pos)))),

lex_prod(min, max, list_lex(min)),

dir_prod(plus, min, app))

We now describe how to translate such IRL1 terms into efficient, executable code that
implements a specified routing interface.

Compilation of an IRL1 term involves mapping its components onto templated C++

code (we discuss template metaprogramming in Section 6.1.1). This code is then

83

6. Compilation

further compiled into machine code by a C++ compiler. The templated code is actually
contained within an external template library, and thus the majority of the effort simply
involves selecting appropriate datatypes and functions. Effectively, we have used the
template facilities of C++ to embed IRL1 within a library. By targeting C++ we also benefit
from the availability of mature, optimising compilers. This frees us from the concerns
of low-level optimisations. Furthermore, the language contains the Standard Template
Library (STL), which contains many useful datatypes such as lists and sets. We reuse
these to reduce the size of the external library. Finally, the routing algorithms (§ 2.7) are
themselves written in C/C++, and therefore it is straightforward to interface with this
code.

This contrasts with our original approach that involved generating C code by embed-
ding it as strings within the compiler itself. Compilation then amounted to emitting
these strings, with names substituted as necessary. This technique caused the source
code for the compiler to become very large due to the many thousands of lines of em-
bedded C code. Furthermore, there was no assurance of type safety for the embedded
code because it was represented as opaque strings within the compiler. Therefore it
was only possible to test the embedded code by emitting it and passing it through a C
compiler. In Section 6.1.1 we explain why it is necessary to adopt C++, instead of C, so
that this embedded code can be abstracted out into an external library.

An IRL1 term comprises types and operators. Here we give an overview of their
translation into C++. We leave a full description to Sections 6.2.1 and 6.2.2 respectively.
Firstly, each IRL1 type is mapped onto the name of a C++ class. Returning to our
example, the IRL1 type

rec((dist, int_non_neg), (bw, int_non_neg),

(path, add_const(NOTSIMP, list_simp(int_pos)))

is translated into the C++ class name

RecWrap<

RecCons<dist, IntNonNeg,

RecCons<bw, IntNonNeg,

RecCons<path, AddConst<NOTSIMP, ListSimp<IntPos> >,

RecLast> > > >

The names within angle brackets are in fact template parameters; we introduce tem-
plates in Section 6.1.1. Also, identifiers such as dist, bw and path correspond to string
constants with the values "dist", "bw" and "path" respectively. We discuss the defi-
nitions of the record classes RecWrap, RecCons and RecLast in Section 6.2.3. Each such
class contains methods to interconvert between the internal format, a wire format (for
distributed algorithms), and a textual format (for parsing and printing configuration).

84

6. Compilation

The second constituent of IRL1 terms are operators. Each such operator is mapped onto
a functor. This is a class that overloads the function call operator (), allowing objects
of the class to be invoked as if they are functions. Again returning to our example, the
IRL1 operator

lex_prod(min, max, list_lex(min))

is translated into the C++ functor name

RecOpLexWrap<

RecOpLexCons<0, IntNonNeg, IntMin,

RecOpLexCons<1, IntNonNeg, IntMax,

RecOpLexCons<2, ListSimp<IntPos>, ListSimpOpLex<IntMin>,

RecOpLexLast> > > >

Again, Section 6.2.3 gives more details about the representation of records. Finally, the
code is wrapped so that it implements the specified routing interface. We diagrammat-
ically represent this process at the end of this chapter in Figure 6.5.

6.1.1 Template metaprogramming

C++ templates are a language feature for abstracting over types. Types and constants
are substituted into templated classes and functions to create regular versions of these
structures. Templates add significant flexibility to the C++ language, increasing code
reusability and reducing the need for code duplication. Moreover, because substitution
of types occurs at compile-time, it is possible to generate efficient code using techniques
such as function inlining. In fact, templates permit a Turing-powerful form of offline
partial evaluation [100, 101]. It is for this reason that programming using templates
is often referred to as metaprogramming; the programmer is writing code that itself
generates code. This is particularly useful for our application.

The power of C++ template metaprogramming has already been exploited by several
linear algebra libraries. For example, Eigen [102] supports templated vectors and matri-
ces. The template metaprogramming is used for optimisation techniques such as loop
unrolling, vectorisation and the elision of dynamic memory allocation. Blitz++ [103]
is another C++ library for linear algebra that again exploits template metaprogramming
to increase performance. The Matrix Template Library [104] uses template metapro-
gramming for efficiently changing the representation of matrices.

We illustrate template metaprogramming using the example of the ‘set-plus’ operator

xs ⊕ ys = {x ⊕′ y | x ∈ xs ∧ y ∈ ys}.

85

6. Compilation

The operator combines elements of the sets xs and ys using some additional operator
⊕
′. Note this operator is used in the minset_union_plus translation in IRL2. We further

discuss the implementation of operators in Section 6.2.2.

We first consider implementing this operator as a C function. In order to implement
this operator within a library, it is necessary to abstract over the operator ⊕′. Within
C, this requires parameterising the function upon a function pointer. That is, for some
set type SetT, we obtain the following function signature for the implementation of the
set-plus operator:

SetT SetPlus(void *(*op)(const void *xs, const void *ys),

xs SetT,

ys SetT);

The first parameter, op, is a function pointer corresponding to the implementation of
⊕
′, and the second and third parameters are the set arguments xs and ys.

Whilst this approach will indeed work, there remain two significant disadvantages due
to the weak abstraction facilities provided by the C language. Firstly, there are runtime
costs associated with function pointers. These costs manifest themselves both when
passing function pointers around as additional parameters and also when invoking
them (unless the compiler can perform function inlining). Secondly, by resorting to
void pointers, we lose type-safety; this was one of the reasons for moving to a library
in the first place.

We now consider implementing the SetPlus operator in the C++ language. The C++

template facilities allow us to easily create multiple copies of functions such as SetPlus
at C++ compile time, with each such copy specialised to a particular op. This eliminates the
additional op parameter, and also permits optimisation techniques such as the inlining
of the op function. Effectively, the C++ compiler is performing much of the work that
was originally occurring in the ‘embedded C’ version of the compiler. We also have
the additional benefits of type-safety and increased maintainability.

Figure 6.1 illustrates the template metaprogramming technique using the C++ imple-
mentation of the SetPlus function. This code is implemented as a functor i.e. it contains
an operator()method. The parameter op is now a functor that is substituted into the
body of the structure at compile-time. The type parameter T is automatically inferred by
the C++ compiler, and corresponds to the type of the set elements. The actual application
of op occurs in the command

res.data_.insert(op()(*x, *y));

Here, op is instantiated and applied to a pair of elements. The returned value is then
inserted into the result set. The set-plus functor is itself applied to pairs of arguments

86

6. Compilation

template <typename op>

struct SetPlus

{

template<typename T>

Set<T> operator()(const Set<T>& xs, const Set<T>& ys) const

{

Set<T> res;

typename std::set<T>::const_iterator x, y;

for (x = xs.data_.begin(); x != xs.data_.end(); x++)

for (y = ys.data_.begin(); y != ys.data_.end(); y++)

res.data_.insert(op()(*x, *y));

return res;

}

};

Figure 6.1: Templated set-plus functor

as SetPlus<op>()(xs, ys). For each distinct op, a different copy of SetPlus is created
by the compiler.

6.2 Compilation

The compilation process is inductively defined over the structure of IRL1 terms. For
each syntactic category within IRL1, we define a translation into a C++ class. It is also
necessary to perform some minimal book-keeping such as generating fresh names
for types and tracking which library files to include. Much of this is standard, and
therefore we do not further elaborate upon the details. We now discuss the details of
the compilation of types (§ 6.2.1) and operators (§ 6.2.2).

6.2.1 Types

Recall that IRL1 types are represented as C++ classes. In many cases these classes are
wrappers around C++ Standard Template Library (STL) types, such as vectors and sets.
In the case of unbound integers, we use the GNU Multiple Precision Arithmetic library
(GMP) [105]. This supports arbitrary precision integer arithmetic, and means that we
are not limited by the C++ fixed-precision integer types.

Figure 6.2 gives the definition of the Set<T> class, which is used to represent the IRL1

set type. We use this example to describe the general interface implemented by all

87

6. Compilation

template <typename T>

class Set

{

public:

Set();

Set(const std::set<T>& data);

Set(const struct ast_sig_t& ast);

Set(char **buf, size_t *size);

static Set rand();

bool operator==(const Set& x) const;

bool operator!=(const Set& x) const;

bool operator<(const Set& x) const;

friend std::ostream&

operator<<(std::ostream& os, const Set& xs) { /*... */ }

void marsh(char **buf, size_t *size, size_t *total) const;

uint32_t hash() const;

std::set<T> data_;

};

Figure 6.2: Templated set class, used to represent the IRL1 set type.

classes that represent IRL1 types. In this example, the parameter T corresponds to the
representation of the element type. Many of following functions that we describe, such
as parsing and printing, will recursively invoke functions upon T for this example.

Parsing Configurations are converted to abstract syntax trees (ASTs), using a generic,
YACC-based parser [64]. The parser is not specialised to any particular routing lan-
guage, but instead is capable of parsing all value types. Each class then has a constructor
which accepts such ASTs, represented using the ast_sig_t type. The class raises an
error if the AST does not represent a value of the correct type, or otherwise creates an
object that corresponds to the concrete value.

Printing Each class extends the C++ stream-based printing mechanism by overloading
operator<<. This operator is invoked whenever a textual representation of a value is
needed e.g. for debugging, or for observing routing solutions. Note that values that
are parsed and then printed should be semantically identical to their original, textual
representation (the order of set elements may be permuted, for example).

Marshalling Each class implements a marshalling function marsh to convert objects
to byte-strings for network transmission. For efficiency reasons, each marshalling

88

6. Compilation

function directly appends to the specified buffer, buf. This avoids performance loss
due to copying. The marshal representations of variable length values, such as sets,
are prefixed with their length. This allows values to be locally unmarshalled, instead
of requiring reference to some index of value offsets and lengths.

Unmarshalling Each class has a constructor that is used for unmarshalling values.
This constructor accepts byte-strings and attempts to validate them. If it succeeds, then
an object of the correct value is instantiated, otherwise an error is raised.

Random instances The rand method is used for creating pseudo-random instances
of classes. This functionality is used to dynamically create example matrices for the
offline algorithms.

Ordering The operator < defines a total order over instances of the class. That is, given
any pair of non-identical objects, we may say that one is strictly more preferred than
the other. This is necessary so that values can be inserted into STL container types such
as sets. The operators == and != are consistent with this ordering. We note that such
orders are distinct from the orders that we add to the metalanguage in Chapter 7.

Hashing The hash function is used to obtain a hashed representation of objects. This
is used both for placing objects into STL hash tables, and also within Quagga to ensure
that each unmarshalled metric is stored just once.

6.2.2 Operators

Recall from Section 6.1 that IRL1 operators are represented as C++ functors. We illus-
trated the functor representation of the set-plus operator in Figure 6.1. This example
demonstrates how functor definitions can be combined to produce new functors, which
is similar to the manner in which classes representing IRL1types are combined. In gen-
eral, the functor representations of operators are relatively straightforward. In many
cases we are able to reuse STL functors, such as for the set union operation.

6.2.3 Records and unions

In this section we discuss our implementation of records and unions, each of which
is based upon a template metaprogramming technique known as typelists [106]. We
first introduce typelists, before describing how we have applied it to our language
implementation.

Typelists allow arbitrary collections of types; we will use the construct to represent
the different types in records and unions. A typelist is simply defined as a structure
that takes two type parameters. We give the definition of a typelist in Figure 6.3(a).
Typelists can be chained together by instantiating the second typelist parameter as

89

6. Compilation

template <class T, class U>

struct Typelist

{

typedef T Head;

typedef U Tail;

};

class NullType {};

template <class TList> struct Length;

template <> struct Length<NullType>

{

enum { value = 0 };

};

template <class T, class U>

struct Length

{

enum { value = 1 + Length<U>::value };

};

(a) Definition of a typelist (b) Static length computation

Figure 6.3: Typelist definitions and operations

another typelist. For example, we define a typelist MyTy containing an integer and a
character as

typedef Typelist<int, Typelist<char, NullType> > MyTy;

Here, NullType, again defined in Figure 6.3(a), is simply used as a distinguished type
to denote the end of the list.

Typelists admit compile-time computations because they are defined at the template-
level. For example, in Figure 6.3(b), we give the definition of a structure to statically
compute the length of a typelist. The length of NullType is defined as 0, whilst the
length of Typelist<T, U> is recursively defined as the length of U plus one. For
example, Length<MyTy>::value evaluates at compile-time to the constant 2. Note that
both of the code samples in Figure 6.3 are taken from [106].

We now describe how we extend typelists to define record types (union types are
defined similarly). The main class involved in our implementation of record types
is RecCons<S, T, U>. This class can be seen as a generalisation of Typelist. The
parameter S is a string specifying the record field name, whilst the parameter T is a
class corresponding to the field type. The final parameter, U, is either a RecCons or a
RecLast, and represents the remainder of the record. Recall that the example RAML1

record type

rec((dist, int_non_neg), (bw, int_non_neg),

(path, add_const(NOTSIMP, list_simp(int_pos))))

is represented as

RecWrap<

RecCons<dist, IntNonNeg,

90

6. Compilation

template <const std::string& S, typename T, typename U>

class RecCons

{

// Constructors (some omitted)

RecCons(char **buf, size_t *size) { /* ... */ }

RecCons(const T& value, const U& next) : value_(value), next_(next) { }

// Operators (some omitted)

bool operator==(const RecCons& x) const

{

return value_ == x.value_ && next_ == x.next_;

}

T value_;

U next_;

};

Figure 6.4: Abbreviated definition of RecCons

RecCons<bw, IntNonNeg,

RecCons<path, AddConst<NOTSIMP, ListSimp<IntPos> >,

RecLast> > > >

The outer type, RecWrap, simply provides a clean interface to the the rest of the record,
whilst RecLast is roughly analogous to NullType. We give an outline of the definition
of RecCons<S, T, U> in Figure 6.4. Note how the equality operator is defined in terms
of the equality operators over T and U. We also use a typelist-based approach to define
types and operators over records and unions.

The typelist-based approach has the advantages that it both integrates well with our
template-based approach to compilation, and also maintains static safety. Furthermore,
due to the template metaprogramming, much of the code is ‘compiled-away’ by the
C++ compiler. An alternative approach would be to programmatically generate a class
definition for each different record size. This technique leads to large class sizes, with
correspondingly slower C++ compilation times. Furthermore, maintenance of code
becomes more difficult. We therefore believe that our typelist-based approach is better-
suited to our application.

91

6.C
om

pilation

C++ datatype (S)
RecWrap<

RecCons<dist, IntBound<0,16>,

RecCons<bw, IntBound<1,32>,

RecLast> > >

Additive function (⊕)
Lex< min, max>

Multiplicative function (⊗)
Prod<min, plus>

Wire format
struct wire {

dist : uint32_t;

bw : uint32_t;

};

Configuration
<dist=5, bw=10>

Print Parse

Marshal Unmarshal

Metric summarisation Policy application

Figure 6.5: Compilation of IRL1 bisemigroup into a datatype and additive and multiplicative functions over that
datatype. We also show utility functions for inter-converting the datatype into textual configuration and a wire
format for transfer between routing daemons.

92

C 7

RAML2: Extended metalanguage

In this chapter we show how to extend RAML1 to increase its expressivity. We call
the extended metalanguage RAML2. We commence by motivating the adoption of a
more expressive metalanguage (§ 7.1). Next we define the extended semantic domain
in which we model RAML2 (§ 7.2). In particular, we add orders and transforms to the
domain. Finally, we describe the metalanguage (§ 7.3), and sketch how it is translated
into the intermediate language IRL2.

7.1 Examples

In this section we describe two routing languages that cannot be expressed within
RAML1. This motivates our adoption of a more expressive metalanguage. We infor-
mally define the examples using RAML2, explaining the language features as we go
along. The definition of RAML2 will be made precise in Section 7.3.

7.1.1 Sets of minimal-length paths

We first address the problem that occurs when there are multiple equivalent or in-
comparable paths between nodes. For example, suppose that metrics comprise simple
lists of arc identifiers, with shorter lists preferred. This has a very rough similarity
to AS paths. We then face the difficulty that given two distinct paths p and q, both
may be of the same length. How might we summarise these paths? We illustrate the
problem in Figure 7.1. Here there are two minimal-length paths between nodes a and
e: [(a, b), (b, e)] and [(a, c), (c, e)].

The solution is to represent metrics as sets of minimal-length paths. For example, the
metric between a and e could be represented as {[(a, b), (b, e)], [(a, c), (c, e)]}. No list
within such a set is ‘smaller’ than another; we term such structures minimal sets. Policy

93

7. RAML2: Extended metalanguage

a

b

c

d

e

(a, d)

(c, b)

(c, d)

(a, b)

(a, c)

(b, e)

(c, e)

Figure 7.1: Minimal-length paths example. Path weights comprise lists of arc identi-
fiers, with shorter lists preferred. The two minimal-length paths between nodes a and
e are [(a, b), (b, e)] and [(a, c), (c, e)]. Both of these paths are denoted in bold. These two
paths can be represented as the minimal set {[(a, b), (b, e)], [(a, c), (c, e)]}.

is applied to sets element-wise, with sets summarised using the set-union operation.
The resulting sets then must be minimised to remove any non-minimal lists.

There are two steps to modelling this routing language in RAML2. Firstly, we define
the paths sub-language as

let paths : order_transform = list_simp_lte_cons(NOTSIMP, string)

The order_transform annotation denotes the kind of the algebra, which we further de-
scribe in Section 7.2. Metrics within the language comprise simple lists of strings, with
each string denoting an arc. An example of a metric value is ["(a, b)", "(b, e)"].
Invalid paths are represented as the constant NOTSIMP. Shorter lists are preferred, with
NOTSIMP least preferred. Policy is represented as strings, such as "(b, e)", which are
‘consed’ onto the head of lists. Note that RAML1 does not support different types for
metric and policy.

The second step in modelling the routing language is to apply a minimal sets construc-
tion to the paths language:

let min_paths : semigroup_transform = minset_union_map(paths)

We properly define minimal sets in Section 7.2.3, noting here that it is not possi-
ble to represent minimal sets within RAML1. Metrics within the min_paths rout-
ing language comprise sets of minimal-length lists of strings. For example, the set
{["(a, b)", "(b, e)"], ["(a, c)", "(c, e)"]} is a metric. Policy remains repre-
sented as strings, such as "(b, e)". Sets are summarised using the union operator,
with lists that are not of minimal-length removed. Policy is applied by invoking the
‘cons’ operator on every list within a set, again with non-minimal lists then removed.

94

7. RAML2: Extended metalanguage

a

b

c

d e

fg

h i

jk

2

3

2

3

2

1

4 3

4

1 2

2

1

1

2

Figure 7.2: Administrative regions example. Shaded boxes indicate administrative re-
gions and arc labels indicate distances. Paths between regions are selected according to
inter-region distances only, allowing the administrators of each region to independently
configure intra-region distances. Bold arcs indicate the selected path from a to e.

7.1.2 Administrative regions

Recall from Chapter 1 that BGP is being used as an IGP in order to allow increased
administrative delegation inside large, geographically distributed networks. In this
section we describe a routing language that allows hierarchical control of path selection;
this example can be seen as a first step towards a ‘BGP-like’ IGP.

Consider the situation shown in Figure 7.2, where there are three administrative regions.
Shaded boxes denote regions and arc weights denote distances. Our desired routing
model is for paths to be selected according to inter-region distances, with intra-region
distances only used to locally select paths within regions. Changing distances within
a region should not affect inter-region paths. This allows the administrator of each
region to independently configure internal policy without affecting inter-region traffic
flows.

The bold path in Figure 7.2 is selected according to the routing language informally
described above. The path has an inter-region distance of 3. The ‘upper’ inter-region
path, which traverses arc (b, d), is not selected. This is because choosing this path
would result in a greater inter-region distance of 4. Intra-region paths are then selected
to minimise the distance within each region. For example, the intra-region path 〈a, c〉
is chosen over 〈a, b, c〉 because the former has an intra-region distance of 2, whereas
the latter has a greater intra-region distance of 5.

95

7. RAML2: Extended metalanguage

let lte_plus : order_transform =

cayley_left (order_left(min_plus_pos))

let inter_region : order_transform =

lex_prod(

edist : lte_plus,

epath : paths,

idist : const(lte_plus),

ipath : const(paths))

let intra_region : order_transform =

lex_prod(

edist : id(lte_plus),

epath : id(paths),

idist : lte_plus,

ipath : paths)

let regions : order_transform =

disj_union(ERROR,

external : inter_region,

internal : intra_region)

Figure 7.3: Routing language for modelling administrative regions

Figure 7.3 defines an implementation of the routing language in RAML2. The lte_plus
sub-language defines the conventional ≤ order over the integers, whilst paths is as
defined in the previous example. The inter_region and intra_region sub-languages
are respectively used to model inter-region and intra-region policy. Both sub-languages
have identical metrics of the form

<edist=m, epath=p, idist=n, ipath=q>

where m and p are external distances and paths, and n and q are internal distances and
paths respectively. Our use of a single metric type means that both inter-region and
intra-region policy may operate upon a given metric. An alternative design would
be to have distinct inter-region and intra-region metric types, although this would
necessitate the additional complexity of defining functions for mapping between the
two types.

The regions routing language specifies that inter-region policy is tagged with the
keyword external, leading to policy of the form

inj(external, <edist=m, epath=p, idist=n, ipath=q>)

96

7. RAML2: Extended metalanguage

This policy causes the sub-policy m and p to be applied to the external distance and
path components, whilst the internal distance and path are reset to the values n and
q respectively. The latter behaviour is specified by the const keyword. Resetting
internal distances and paths ensures that these values do not ‘leak’ between regions,
compromising the independent configuration of intra-region policy.

Returning to the regions routing language, intra-region policy is tagged with the
keyword internal, resulting in policy of the form

inj(internal, <edist=m, epath=p, idist=n, ipath=q>)

This causes the sub-policy n and q to be applied to the internal distance and path
components. The external distance and path policy are ignored, with the corresponding
metric fields simply copied. The behaviour is specified by the id keyword (we have
developed a language extension that can automatically elide these fields, which would
cause internal policy to only contain idist and ipath fields).

This example cannot be expressed in RAML1 because the language does not support
a functional model of policy application. This facility is required for representing the
const and id operations.

7.2 Semantic domain

The RAML1 metalanguage is based upon semigroups and bisemigroups. In this section
we show how bisemigroups can be seen as a specific instance of a larger class of algebraic
structures that may be used for modelling routing languages. This generalised set of
algebraic structures forms the semantic basis of RAML2. More complete descriptions
of these structures can be found in [91].

We first consider the task of weight summarisation. Algebraic summarisation uses a
semigroup (S, ⊕). Weights s1, s2 ∈ S are summarised as s1 ⊕ s2 ∈ S. This is the method
that we introduced in Chapter 2 and used for defining RAML1 in Chapter 5. An
alternative is to instead use ordered summarisation. This makes use of a order (S, 4). We
say that s1 is more preferred or less than s2 if and only if s1 4 s2.

We now consider policy. Algebraic policy uses a semigroup (S, ⊕). Policy s1 ∈ S is
applied to a metric s2 ∈ S as s1 ⊗ s2 ∈ S. Again, we introduced this type of policy in
Chapter 2 and used it for defining RAML1 in Chapter 5. An alternative approach is
to use functional policy. Here, we have a set of functions F ⊆ S → S. Policy f ∈ F is
applied to a metric s ∈ S as the function application f (s).

Combining the two summarisation methods with the two forms of policy we obtain
four different kinds of algebras. These are illustrated in Figure 7.4. In many cases it

97

7. RAML2: Extended metalanguage

Weight summarisation
Weight
computation Algebraic Ordered

Algebraic

Bisemigroups

(S, ⊕, ⊗)

Semirings [4, 5, 88]
Non-distributive semirings [107, 108]

Order Semigroups

(S, 4, ⊗)

Ordered semirings [109, 110, 111]
QoS algebras [112]

Functional
Semigroup Transforms

(S, ⊕, F)

Monoid endomorphisms [5, 88]

Order Transforms

(S, 4, F)

Sobrinho structures [3, 113]

Figure 7.4: The quadrants model of algebraic routing, from [91]

is possible to translate between the various kinds of algebras, depending upon their
mathematical properties. In this chapter we show how to expand the metalanguage to
use all four kinds of structures. We now discuss the different kinds of algebra.

7.2.1 Orders

An order (S, 4) is a binary relation 4 over a set S. Orders denoted by routing languages
are normally preorders. A preorder is a reflexive and transitive order. An order is reflexive
if for all s ∈ S,

s 4 s ()

and transitive if for all s1, s2, s3 ∈ S,

s1 4 s2 ∧ s2 4 s3 ⇒ s1 4 s3 ().

The reflexivity and transitivity properties ensure that metrics summarisation has the
intuitive semantics that we might expect. We define a selection of algebraic properties
of orders in Figure 7.5. We note that a partial order is an anti-symmetric preorder whilst
an equivalence relation is a symmetric preorder.

Given an order (S, 4), we can define the following relations:

s1 ≺ s2 ⇐⇒ (s1 4 s2) ∧ (s2 $ s1)
s1 ∼ s2 ⇐⇒ (s1 4 s2) ∧ (s2 4 s1)
s1] s2 ⇐⇒ (s1 $ s2) ∧ (s2 $ s1)

For s1, s2 ∈ S, we say that s1 is strictly less than s2 if s1 ≺ s2, equivalent if s1 ∼ s2 and
incomparable if s1] s2.

98

7. RAML2: Extended metalanguage

Property Definition Preorder Partial order Equivalence relation
 x 4 x X X X

 x 4 y ∧ y 4 z⇒ x 4 z X X X

 x 4 y⇒ y 4 x × X

 x 4 y⇒ x = y X ×

 x 4 y ∨ y 4 x
 ∃α4 ∈ S. x 4 α4
 ∃ω4 ∈ S. ω4 4 x

Figure 7.5: Properties of orders (S, 4). All free variables are universally quantified.

Now suppose that we have a bisemigroup (S, ⊕). We can translate it into an order (S, 4)
in two ways:

order left(S, ⊕) = (S, 4L) where s1 4L s2 ⇐⇒ s1 = s1 ⊕ s2

order right(S, ⊕) = (S, 4R) where s1 4R s2 ⇐⇒ s2 = s1 ⊕ s2

We refer to the resulting orders as the left and right translations, respectively. Similarly,
we can also translate a total preorder into a selective semigroup:

semigroup left(S, 4) = (S, ⊕L) where s1 ⊕L s2 =

 s1 if s1 4 s2

s2 otherwise

semigroup right(S, 4) = (S, ⊕R) where s1 ⊕R s2 =

 s2 if s1 4 s2

s1 otherwise

We can use these translations to convert between algebraic and ordered weight sum-
marisation. We diagrammatically represent these translations and the following trans-
lations in Figure 7.6.

Note that the translations allow us to establish equivalences between properties in
each quadrant. For example, a semigroup is idempotent if and only if the left or right
preorder is reflexive i.e. x 4L x ⇐⇒ x = x ⊕ x.

We now define some examples of orders that will be used by our extended metalan-
guage RAML2. These are in addition to the translations defined above.

Set size Let S be a set. Define the set size preorder as (P(S), 4), where for X, Y ∈ T,
X 4 Y ⇐⇒ |X| ≤ |Y|.

List length Define the list length preorder similarly to the set size preorder. Let S
be a set, and let T ∈ {L(S), S(S)}. Define the preorder as (T, 4), where for X, Y ∈ T,
X 4 Y ⇐⇒ |X| ≤ |Y|.

Trivial For a set S, define the trivial order over S as (S, ∼), where for s1, s2 ∈ S, s1 ∼ s2.
i.e. all pairs of elements are related by this order.

99

7. RAML2: Extended metalanguage

Discrete For a set S, define the discrete order over S as (S, =). That is, pairs of elements
are only related if they are equal.

Top/bottom Let S = (S, 4) be an order. Define the top order as>(S) = (1+S, 4>), where
for x, y ∈ 1 + S,

x 4> y ⇐⇒ y = inl(1) ∨ (x = inr(s1) ∧ y = inr(s2) ∧ s1 4 s2)

The bottom order is defined similarly, but with inl(1) now a minimal element.

Direct product Let S = (S, 4S) and T = (T, 4T) be preorders. Define the direct product
preorder as S × T = (S × T, 4S×T), where for (s1, t1), (s2, t2) ∈ S × T we have that
(s1, t1) 4S×T (s2, t2) ⇐⇒ s1 4S s2 ∧ t1 4T t2. This can be extended to the n-ary case in a
straightforward manner.

Lexicographic product Let S = (S, 4S) and T = (T, 4T) be preorders. Define the
lexicographic product preorder as S ~× T = (S × T, 4S~×T), where for (s1, t1), (s2, t2) ∈ S × T
we have that (s1, t1) 4S×T (s2, t2) ⇐⇒ s1 ≺S s2 ∨ (s1 = s2 ∧ t1 4T t2.) Again, it is
straightforward to extend this to the n-ary case.

Disjoint union Let S = (S, 4S) and T = (T, 4T) be preorders. Define the disjoint union
preorder as S + T = (S + T, 4S+T), where for x, y ∈ S + T,

x 4S+T y =

 s1 4S s2 x = inl(s1) ∧ y = inl(s2)
t1 4T t2 x = inr(t1) ∧ y = inr(t2)

Once more, it is straightforward to extend this to the n-ary case.

7.2.2 Transforms

We now discuss transforms. A transform (S, F) comprises a set of functions F, where
each function f ∈ F is of type S → S. We are concerned with a restricted form of
transform where the set of functions is indexed by some label set L. In this case, a
transform has the form (S, L, B) where B: L→ S→ S. We define a range of properties
of transforms in Figure 7.7.

Our approach of specifying functions using labels, instead of directly as higher-order
values, has two benefits. Firstly, policy checking becomes tractable; in general, function
equality is uncomputable, and therefore it would be undecidable as to whether an
arbitrary function f were indeed a member of F. Secondly, it allows policy to be more
easily configured; it is far easier to write a first-order value l ∈ L in a router configuration
rather than a higher-order value. Policy configuration using labels is explored in more
detail in [114].

Semigroups can be converted to transforms using a Cayley transform which ‘partially
applies’ the semigroup operator. Suppose that we have a semigroup (S, ⊕). We can

100

7. RAML2: Extended metalanguage

(S, ⊕, ⊗) (S, 4, ⊗)

(S, 4, F)(S, ⊕, F)

order left, order right

semigroup left, semigroup right,
minset union plus

cayley left,
cayley right

semigroup left, semigroup right,
minset union map

order left, order right

cayley left,
cayley right

Figure 7.6: Translations between algebraic structures

Property Definition
 f (f (s)) = f (s)
 f (g(s)) = g(f (s))
 f (a) = f (b)⇒ a = b
 ∃h. f (g(s)) = h(s)
 ∃c. f (s) = c

Figure 7.7: Properties of transforms (S, F). All free variables are universally quantified.

convert it into a transform using the left Cayley transform as

cayley left(S, ⊕) = (S, S, {λx.s ⊕ x | s ∈ S}).

Similarly, the result of applying the right Cayley transform is

cayley right(S, ⊕) = (S, S, {λx.x ⊕ s | s ∈ S}).

We use these translations to convert from algebraic to functional policy application.

Transforms can also be converted to semigroups by using function composition over
the function set. For example, consider the transform (S, F). This can be translated
to a semigroup as (F, ◦) where ◦ is the standard function composition operator i.e. for
f , g ∈ F and s ∈ S, (f ◦ g)(s) = f (g(s)). We describe this translation for completeness,
although we do not support it in the metalanguage due to the aforementioned problems
with higher-order values.

We now define some examples of transforms that will be used by our extended meta-
language RAML2. These are in addition to the translations defined above.

List consing Define the listing consing transform as (S, L(S), cons), where S is a set and
cons ∈ S → L(S) → L(S) corresponds to the usual ‘consing’ operation, whereby an
element is added to the head of a list.

101

7. RAML2: Extended metalanguage

Constant Define the constant transform as (S, S, const), where const ∈ S → S → S
is defined as (const(s1))(s2) = s1 for s1, s2 ∈ S. That is, the partially-applied function
const(s) always returns s ∈ S when applied to an additional argument.

Identity Define the identity transform as (S, S, id), where id ∈ S → S → S is defined
as (id(s1))(s2) = s2 for s1, s2 ∈ S. The partially-applied function id(s) performs as the
identity function when applied to an additional argument.

Direct product Let S = (S1, S2, BS) and T = (T1, T2, BT) be transforms. Define the direct
product transform as S × T = (S1 × T1, S2 × T2, BS×T), where for (s1, t1) ∈ S1 × T1 and
(s2, t2) ∈ S2 × T2, we have (s1, t1) BS×T (s2, t2) = (s1 BS s2, t1 BT t2). This operation can be
extended to the n-ary case in a straight-forward manner.

Disjoint union Let S = (S1, S2, BS) and T = (T1, T2, BT) be transforms. Define the
disjoint union transform as S+T = (S1 +T1, 1+ (S2 +T2), BS+T), where for (s1, t1) ∈ S1×T1

and (s2, t2) ∈ S2 × T2, we have

inl(s1) BS+T inr(inl(s2)) = inr(inl(s1 BS s2))
inr(t1) BS+T inr(inr(t2)) = inr(inl(t1 BT t2))
inr() BS+T inr(inl()) = inl(1)
inl() BS+T inr(inr()) = inl(1)

BS+T inl(1) = inl(1)

Again, this operation can be extended to the n-ary case in a straight-forward manner.

7.2.3 Minimal sets

We now describe a translation from preorders to semigroups when the preorder is not
total. This was the case in the example in Section 7.1.1. The difficulty arises because
there may be pairs of elements that are equivalent or incomparable, and in such cases
there is no ‘best’ element. Our approach, described below, is to use sets of minimal
values.

Suppose that we have a non-total preorder (S, 4). Define minimisation on X ∈ P(S) as

min4(X) = {s1 ∈ X | ∀s2 ∈ X. s2 ⊀ s1}

Using this operator, define the set of minimal sets from P(S) as

P4(S) = {X ∈ P(S) | min4(X) = X}.

We now describe three operations that can be performed upon minimal sets. Firstly,
for X1, X2 ∈ P4(S), define the minimal set union operation as

X1 ∪4 X2 = min4(X1 ∪ X2).

102

7. RAML2: Extended metalanguage

This operation simply forms the union of the two argument sets and then removes any
non-minimal elements.

Next, suppose that we have a transform (S, F). For f ∈ F and X ∈ P4(S), define the
minimal set map operation as

map4(f)(X) = min4({ f (s) | s ∈ X}).

This operation applies the function f to each element x ∈ X, and then removes non-
minimal elements. In combination, the minimal set union and set map operations allow
translation of a non-total order transform to a semigroup transform as

minset union map(S, 4, F) = (P4(S), ∪4, {map4(f) | f ∈ F}).

Finally, suppose that we have a semigroup (S, ⊕). For X1, X2 ∈ P4(S), define the minimal
set plus binary operator as

X1 ⊕4 X2 = min4({s1 ⊕ s2 | s1 ∈ X1 ∧ s2 ∈ X2})

That is, each pair of elements from X1 and X2 are combined using the ⊕ operator, and
then any non-minimal values are removed from the resulting set. In combination,
the minimal set union and set plus operations allow translation of a non-total order
semigroup (S, 4, ⊕) to a semigroup transform as

minset union plus(S, 4, ⊕) = (P4(S), ∪4, ⊕4).

An extension to minimal sets is k-best sets [115]. Given a total-order (S, 4), we define sets
of at most k elements. Minimisation now consists of removing maximal elements one at
a time until only k elements remain. This construction allows us to represent ‘second-
best’ metrics etc. We can use k-best sets to translate from ordered summarisation
to algebraic summarisation, in a similar manner to minimal sets. We return to this
construction in Chapter 8.

7.3 Metalanguage

In this section we describe RAML2, the extended metalanguage. The metalanguage
contains constructors for all four kinds of algebras. A complete RAML2 routing lan-
guage specification comprises a sequence of let-bound sub-languages, as shown in the
examples of Section 7.1. This facility allows complex routing languages to be decom-
posed into their constituent components. We give the syntax of RAML2 in Figures 7.8,
and 7.9.

Recall that RAML2 is translated into the intermediate language IRL2. This contains rep-
resentations of order semigroups, semigroup transforms and order transforms. Whilst

103

7. RAML2: Extended metalanguage

we do not further elaborate upon the details, IRL2 is a straight-forward, if not lengthy,
extension of IRL1. This language can then be given a semantics by mapping it into the
mathematical domain of 7.2.

Compilation of RAML2 is again a straight-forward extension of the bisemigroup case.
We embed orders and transforms as functors within C++. This is similar to the manner
in which semigroups are represented. Given a pair of elements (x, y), a functor that
represents an order returns whether x is less than, equivalent, greater than or incomparable
to y. This result type is encoded as an enumeration. Functors that represent transforms
accept an addition label parameter.

The actual version of RAML that exists in the metarouting system is essentially the
same as the RAML2 metalanguage, with a few small additions. Firstly, the language
incorporates more bounded types, such as bounded lists and strings. These types
are essential for controlling the resource usage in deployed routing protocols; we
might wish to control the maximum length of an AS path, for example. Secondly,
we have added ‘syntactic sugar’, such as facilities for allowing fields to be renamed
and reordered in records. Whilst this does not affect the underlying semantics of the
language, we believe that it aids usability. Finally, as noted in the regions example
(§ 7.1.2), in some cases we allow record fields to be omitted if they are unused.

104

7. RAML2: Extended metalanguage

ty F (type)
| . . .
| minset(ty,ord) (minimal set)
| kbest(n,ty,ord) (k-best set)

ord F (order)
| list_len(ty) (list length)
| list_simp_len(ty) (simple list length)
| set_size(ty) (set size)
| flip(ord) (flipped order)
| triv(ty) (trivial order)
| disc(ty) (discrete order)
| add_top(i,ord) (add top)
| add_bot(i,ord) (add bottom)
| dir_prod(i1:ord1,. . . ,in:ordn) (direct product)
| lex_prod(i1:ord1,. . . ,in:ordn) (lexicographic product)
| disj_union(i1:ord1,. . . ,in:ordn) (disjoint union)
| sg_left(sg) (left semigroup translation)
| sg_right(sg) (right semigroup translation)

bsg F (bisemigroup)
|
| sg_left(osg) (left semigroup translation)
| sg_right(osg) (right semigroup translation)
| minset_union_plus(osg) (minimal set union / plus translation)
| kbest_union_plus(n,osg) (k-best set union / plus translation)

osg F (order semigroup)
| set_sub_union(ty) (set subset / union)
| list_lte_app(ty) (list length / append)
| list_simp_lte_app(i,ty) (simple list length / append)
| add_top_omega_times(i,osg) (add top / omega times)
| add_bot_alpha_times(i,osg) (add bottom / alpha times)
| dual(osg) (dual order)
| dir_prod(i1:osg1,. . . ,in:osgn) (direct product)
| lex_prod(i1:osg1,. . . ,in:osgn) (lexicographic product)
| disj_union(i,i1:osg1,. . . ,in:osgn) (disjoint union)
| order_left(bsg) (left order translation)
| order_right(bsg) (right order translation)

Figure 7.8: Syntax of RAML2 types, orders, bisemigroups and order semigroups

105

7. RAML2: Extended metalanguage

sgt F (semigroup transform)
| const(sgt) (constant)
| id(sgt) (identity)
| dir_prod(i1:sgt1,. . . ,in:sgtn) (direct product)
| lex_prod(i1:sgt1,. . . ,in:sgtn) (lexicographic product)
| disj_union(i,i1:sgt1,. . . ,in:sgtn) (disjoint union)
| cayley_left(bsg) (left Cayley translation)
| cayley_right(bsg) (right Cayley translation)
| sg_left(ot) (left semigroup translation)
| sg_right(ot) (right semigroup translation)
| minset_union_map(ot) (minimal set union / map translation)
| kbest_union_map(n,ot) (k-best set union / map translation)

ot F (order transform)
| const(ot) (constant)
| id(ot) (identity)
| dual(ot) (dual order)
| list_lte_cons(ty) (list length / cons)
| list_simp_lte_cons(i,ty) (simple list length / cons)
| add_top_fix(i,ot) (add top / fixed-point)
| add_bot_fix(i,ot) (add bottom / fixed-point)
| dir_prod(i1:ot1,. . . ,in:otn) (direct product)
| lex_prod(i1:ot1,. . . ,in:otn) (lexicographic product)
| disj_union(i,i1:ot1,. . . ,in:otn) (disjoint union)
| cayley_left(osg) (left Cayley translation)
| cayley_right(osg) (right Cayley translation)
| order_left(sgt) (left order translation)
| order_right(sgt) (right order translation)

b F (binding)
| let i : semigroup = sg (semigroup)
| let i : order = ord (order)
| let i : bisemigroup = bsg (bisemigroup)
| let i : order_semigroup = osg (order semigroup)
| let i : semigroup_transform = sgt (semigroup transform)
| let i : order_transform = ot (order transform)

s F {b}+ (routing language specification)

Figure 7.9: Syntax of RAML2 semigroup transforms, order transforms, bindings and
routing language specifications

106

C 8

Performance

In this section we present a number of optimisation techniques for improving the run-
time performance of compiled routing languages. These optimisation techniques may
be specified when invoking the metarouting compiler. We commence with a discussion
of the different optimisation techniques (§ 8.1), and the test methodology (§ 8.2). We
then present the results of the performance experiments (§ 8.3). Finally, we relate the
results to the optimisation techniques and discuss the relevance of the results to online
routing (§ 8.4).

8.1 Optimisations

8.1.1 Overview of sharing

Our first optimisation technique is known as sharing and involves storing multiple
equivalent values just once within the runtime. We are able to use this optimisation
technique because state is immutable (i.e. cannot be changed) within compiled routing
languages. Sharing can be applied to any routing language, although with varying
degrees of success according to the underlying data-structures and runtime values.

There are two main benefits to sharing. Firstly, providing that there are indeed a
sufficient number of duplicate values, it can reduce memory usage. For example, [116]
has an example of a lambda evaluator where memory usage decreases by two orders of
magnitude. Secondly, sharing opens up a number of avenues for increasing execution
speed by identifying values according to their location in memory.

Sharing was first widely used to increase the efficiency of implementations of the LISP
functional programming language. The technique was known as hash-consing [117],
due to the fact that cons is the only operation in LISP that allocates values on the heap,
and the sharing is typically implemented using hash tables. More recently, [116] has
demonstrated how the technique can also be implemented as a library for the OCaml

107

8. Performance

p0

p1

"foo" p2

"qux" p2

"bar" p3 "baz" 0

Key Value
("foo", p2) p0

("qux", p2) p1

("bar", p3) p2

("baz", 0) p3

(a) List representation (b) Hash table

Figure 8.1: Example of hash-consed lists

language. Sharing can also be applied to object oriented programs in the form of the
fly-weight pattern [118]. Common object state is factored into external structures that are
typically reference-counted or garbage-collected. Hence multiple objects can reference
the same common state, often with the storage overhead of only a single pointer per
shared value.

We note that sharing is already used in existing routing implementations to reduce
memory usage. For example, the Quagga BGP daemon stores all AS paths within a
hash-table. Whenever an AS path is received from a peer, the hash-table is first checked
to see whether that AS path is already present within the system. If it is, then a reference
to the existing AS path is returned (avoiding duplication), otherwise the new AS path
is stored in the hash-table. Therefore this section demonstrates how to systematically
apply an optimisation technique that is currently implemented ‘by hand’ in existing
router platforms.

One important property of systems implementing sharing is maximal sharing. A system
implementing this form of sharing guarantees that all pairs of semantically equal values
are shared [116]. This means that semantic equality coincides with physical equality
and therefore semantic equality can be cheaply checked with a single pointer equality
test; values are semantically equal if and only if they reside at identical locations in
memory.

We exploit sharing in several ways. Firstly, in Section 8.1.2, we describe our imple-
mentation of sharing for lists. This uses a simple hash-consing mechanism. Next, in
Section 8.1.3, we show how to efficiently implement shared sets using a data structure
known as a Patricia tree. Our design is dependent upon maximal sharing of element
values for efficient operation. Finally, in Section 8.1.4, we show how to memoise operator
implementations so that they cache result values. Again, for efficient operation, our
design requires that operator arguments are maximally shared.

8.1.2 Hash-consed lists

In this section we describe how we using hash-consing to share lists. We represent
lists as chains of heap-allocated pairs. Each pair comprises a list element value and a

108

8. Performance

pointer to the tail of the list (or the null-pointer, 0, if there is none). We call these pairs
‘cons cells’ after the analogous structures found in LISP. Consider the example of hash-
consed lists shown in Figure 8.1(a). Here there are two lists, ["foo","bar","baz"] and
["qux","bar","baz"], which are accessible via pointers p0 and p1 respectively.

A benefit of hash-consing is that it allows sharing of sub-structure; even though the two
lists in Figure 8.1(a) are non-identical, their common tails are still shared. This permits
a greater degree of sharing over schemes such as that found in Quagga, whereby pairs
of lists are shared only if they are identical. In the latter approach, minor variations
between lists cause a loss of sharing.

We implement sharing using a hash-table. A hash table is an efficient map structure
that uses a hash function to permit O(1) lookups and insertions (with some caveats).
Keys comprise pairs of a list element value and a pointer, whilst values are pointers
to the corresponding heap-allocated cell. When constructing lists, we start with the
last element and work backwards. Given a value and a tail pointer, the hash-table is
checked to see whether a corresponding cons cell is already allocated. If so, a pointer to
the existing cons cell is returned. Otherwise, a new cons cell is allocated, and an entry
is inserted into the hash-table. Figure 8.1(b) illustrates the hash-table associated with
our example lists.

In order to prevent memory leaks, it is necessary to detect when cons cells are no longer
accessible and remove them from the heap. For this, we use the standard technique of
reference counting. Each cons cell is associated with an integer reference count indicating
the number of ‘incoming’ pointers. The reference count can either be stored in the hash-
table or else in the cons cells themselves. Whenever the reference count drops to zero,
the cons cell can be removed from the heap. Note that in languages with automatic
memory management, such as OCaml, the task of freeing unreferenced cons cells may
be delegated to the garbage collector.

A possible improvement is to leave such cells allocated and only reclaim the heap space
when the amount of available free memory on the system reaches a specified minimum
value (‘weak’ pointers can be used for this purpose). This strategy can reduce the
likelihood of cons cells being deleted and then subsequently recreated. We do not
further explore this avenue.

8.1.3 Patricia trees

In this section we describe how we efficiently represent sets of values using a data
structure known as a Patricia tree [119]. A Patricia tree is an example of a more
general data structure known as a trie. Tries are tree-like structures that are used for the
efficient implementation of maps. Keys are grouped according to their prefixes, leading
to good spatial locality for lookups and insertions. Furthermore, empty subtrees can

109

8. Performance

y x z

(a) Binary trie

y x z

(b) Binary trie, no empty sub-trees

1

y 4

x z

(c) Patricia tree

Figure 8.2: Comparison between binary tries and Patricia trees. Each structure rep-
resents the 3-bit map {1 → x, 4 → y, 5 → z}. Keys are processed in their binary
representation, least-significant bit first e.g. 1, 4 and 5 are processed as the strings 100,
001 and 101 respectively. Example taken from [120].

be eliminated in order to increase memory efficiency. It is for these reasons that tries
are frequently used within router implementations when storing IP addresses.

Figure 8.2 illustrates binary tries and Patricia trees. Figure 8.2(a) shows a standard
binary trie. Map keys are processed bit-wise, with the bit value determining whether
to descend into the left or right sub-tree. Figure 8.2(b) shows the effect of eliminating
empty sub-trees. A Patricia tree additionally eliminates redundant bit tests, with each
node now containing a value specifying the bit position to test. The Patricia tree in
Figure 8.2(c) represents bit position n as the value 2n. Hence, when finding a value, we
first test the zeroth bit (node value 20 = 1) of the key. If it is zero, then the only value in
the left sub-tree is y, and hence we can immediately test the key against that stored in
the leaf node for y (leaf keys omitted). Otherwise, we test the second bit-position (node
value 22 = 4). Depending upon the result, we can immediately test the key against that
stored in either the left or the right leaf nodes.

In order to represent sets of values using Patricia trees, it is first necessary to associate
each value with an integer key. This allows values to be inserted into Patricia trees.
Note that the association between each key and value must be unique in order to
prevent a single value from being stored multiple times within the same Patricia tree.
For maximally-shared values, we obtain such an association by using the memory
addresses of the values; by the maximal sharing property, each value is guaranteed
to be represented just once, and hence have a unique memory address. For values
that are not maximally-shared we can instead use hashes, although they may be more
expensive to compute and may also reduce the locality of storage within the Patricia
trees.

In common with [116], we implement maximal-sharing of Patricia trees themselves
by sharing sub-trees within Patricia trees. This requires that each node additionally
contains a reference count, although in most cases the additional cost appears to be
negligible. Maximally-shared Patricia trees can then be stored within other Patricia

110

8. Performance

int times_two(int x)

{

return x * 2;

}

Key Value
3 6

19 38

2 4

(a) Double function (b) Hash table

Figure 8.3: Example of memoisation

trees. In this way, we can efficiently represent sets of sets etc. (see below for an
example).

Micro-benchmarks from [120] suggest that Patricia trees support particularly fast merg-
ing when compared with binary search trees, splay trees and red-black trees. When
using tries to represent sets, this leads to efficient set union operations. This is an
improvement upon the GNU implementation of the C++ STL set, which internally uses
red-black trees. Patricia trees are also competitive with other tree datatypes for inser-
tion and lookup times, especially when keys are processed most-significant bit first
(this tends to increase locality of storage within the tree).

8.1.4 Memoisation

In this section we describe an optimisation strategy called memoisation. In contrast to
the list and set data-structure optimisations presented in Sections 8.1.2 and 8.1.3, this
approach is applied to functions. This optimisation caches argument/result pairs of
functions to avoid re-evaluating the functions at identical arguments. Typically the
cache is implemented using a hash table.

Consider the times_two function in Figure 8.3(a), which returns its integer argument
doubled. When evaluating times_two at a given value x, the associated hash-table
is first consulted to check whether the function has previously been evaluated at this
value. If so, then the cached result value is returned. Otherwise, the function is
evaluated and the result value is stored in the hash table, before being returned to the
function caller. The cache in Figure 8.3(b) indicates that times_two has already been
evaluated at 2, 3 and 19. Re-evaluating the function at any of these values would
immediately return the cached result values without invoking times_two.

Memoisation can be implemented particularly efficiently for maximally-shared values.
Here, keys and values within the hash-table comprise pointers. Checking equality of
two keys is reduced to a single pointer equality check. Also, note that greater benefits
are obtained when memoising particularly ‘expensive’ functions. For ‘cheap’ functions,
the cost associated with maintaining the cache table may outweigh the benefits.

A disadvantage of memoisation is that it introduces a speak leak: all key/value pairs
remain cached until the program terminates. One alternative is to remove key/value

111

8. Performance

pairs from the hash-table as soon as a key or value is deleted from the system. However,
this often leads to very little caching. Therefore the preferred solution is to instead use
weak pointers, as outlined for hash-consed lists. We do not further discuss this feature.

8.1.5 Minimisation

In this section we discuss two algebraic optimisations for algebras that use minimal
sets. In comparison to the optimisations that are based upon sharing, each of the
optimisations for minimal sets is dependent upon properties that are automatically
inferred by the compiler.

Avoiding minimisation

Our first optimisation for minimal sets allows the minimisation operation to be elided.
It exploits the fact that some operations upon minimal sets produce sets which are
themselves already minimal. Concretely, suppose that we have an order transform
S = (S, 4, F). Convert it to a semigroup transform as (T, ⊕, G) = minset union map(S).
We can avoid minimisation after mapping a function over a set if for all f ∈ F and
x, y ∈ S, we have the property

(x ∼ y) ∨ (x] y)⇒ (f (x) ∼ f (y)) ∨ (f (x)] f (y)).

That is, pairs of elements that are incomparable or equivalent remain incomparable or
equivalent after function application. Depending upon the computational cost of the
minimisation operation, this can lead to a significant reduction in the overall execution
time.

One example of a preorder transform that has this property is list_lte_cons(ty)
i.e. lists of elements of type ty, with shorter lists preferred and function application
corresponding to the cons operation. Pairs of lists that are of equal length remain
of equal length after applying a cons operation. Therefore, upon converting to a
semigroup transform as minset_union_map(list_lte_cons(ty)), it is safe to elide the
minimisation operation after mapping a cons operator over a (minimal) set.

Lazy minimisation

Our next optimisation allows us to ‘lazily’ minimise sets. That is, it is safe to omit min-
imisation operations to obtain non-minimal sets, providing that minimisation eventu-
ally occurs. Note that this may lead to a decrease in performance due to non-minimal
elements increasing the average set size.

112

8. Performance

This optimisation again assumes a preorder transform S = (S, 4, F). Convert it to a
semigroup transform as (T, ⊕, G) = minset union map(S). We can temporarily avoid
minimisation after mapping a function over a set if for all f ∈ F and x, y ∈ S, we have
the monotonicity property

x 4 y⇒ f (x) 4 f (y).

Monotonicity implies that the relative ordering of elements remains unchanged af-
ter function application. Therefore a non-minimal element will always remain non-
minimal, even after function application, and hence its removal from a set may be
safely delayed.

The preorder transform list_lte_cons(ty) has the monotonicity property; for lists X
and Y, we have that |X| ≤ |Y| ⇒ |cons(z)(X)| ≤ |cons(z)(Y)|. Therefore, upon convert-
ing to the semigroup transform minset_union_map(list_lte_cons(ty)), it is safe to
temporarily elide the minimisation operation (although we have already shown in the
previous section that minimisation can always be elided in this case).

8.2 Methodology

In order to evaluate the effects of different optimisation techniques, it is necessary to
accurately measure the runtime performance of compiled routing languages. Our ap-
proach is to combine the compiled routing languages with a standard offline algorithm
in order to create an executable program. We do not use an online algorithm because
our intention is to measure the performance of the routing language only, and offline
algorithms permit a more controlled test environment (for example, we do not have to
control for issues such as network latency or packet buffer sizes).

8.2.1 Routing languages

We evaluate optimisations using three different routing languages. The first two lan-
guages are intended to be toy examples of languages for Internet routing protocols. It
is plausible that these languages might be elaborated to produce fully-fledged routing
protocols, and therefore the optimisation of these languages is of particular interest.
The third language is drawn from an operational research context. This example is use-
ful for assessing the generality of our optimisation techniques, and also demonstrates
that metarouting may have applications beyond Internet routing.

Set of minimal paths

The first routing language is based upon the minimal paths example from from Sec-
tion 7.1.1. The routing language is defined as

113

8. Performance

let paths : order_semigroup = list_simp_lte_app(NOTSIMP, string)

let min_paths : bisemigroup = minset_union_plus(paths)

That is, elements of the language comprise sets of duplicate-free, minimal-length paths.
We evaluate this routing language over graphs in which each arc (i, j) is labelled as
{["i- j"]}.

K-best paths

Our second algebra, kbest_paths, builds upon min_paths in two ways. Firstly, we
associate each path with a distance and bandwidth. These values are then compared
lexicographically. This routing algebra is defined as

let paths : order_semigroup = list_simp_lte_app(NOTSIMP, string)

let dist : order_semigroup = order_left(min_plus_bound(ERR, 0, 100))

let bw : order_semigroup = order_left(max_min_bound(ERR, 0, 1000))

let dist_bw_paths : order_semigroup =

lex_prod(

dist : dist,

bw : bw,

path : paths,

)

In a practical setting, the addition of distance and bandwidth metric might provide a
finer degree of control over selected routes. Secondly, we compute k-best sets of paths
instead of minimal sets of paths:

let kbest_paths : bisemigroup = kbest_union_plus(5, dist_bw_paths)

In this particular instance, we constrain the maximum number of paths to be five.
Hence values in this routing language may contain up to four sub-optimal paths in
addition to the best path(s).

We evaluate this routing language over graphs in which each arc (i, j) is labelled as
{<dist = 1, bw = 1, path = ["i- j"]>}.

Martelli’s algebra

Our final algebra, martelli, is from [121, 122]. We again define this algebra in two
steps. Firstly we define a preorder semigroup sets comprising sets of strings, ordered
by set inclusion (subsets are preferred). Sets are combined with the union operation.
This routing language is defined as

114

8. Performance

u v w

x

(u, v) (v, w)

(v, x) (x, w)

Figure 8.4: Example graph to illustrate minimal cut-sets

let sets : order_semigroup = set_sub_union(string)

We then translate sets to a bisemigroup using a minset construction, and then exchange
the additive and multiplicative components:

let martelli : bisemigroup = swap(minset_union_plus(sets))

The resulting algebra comprises sets of sets, satisfying the condition that within each
set, no set is a subset of any other. Multiplication corresponds to set union whilst
addition is set plus, with each set element unioned.

The Martelli routing language is used to compute sets of minimal cut-sets. Suppose
that we have a graph G = (V, E). Then for i, j ∈ V, an i− j cut-set is a set of edges E′ ⊆ E
that disconnects i from j i.e. there is no path from i to j in G′ = (V, E \E′). A minimal i− j
cut-set is an i − j cut-set E′ for which there is no i − j cut-set E′′ ⊂ E′.

We illustrate minimal cut sets using the graph in Figure 8.4. The full set of minimal
(u, w) cut-sets comprises

{{(u, v)}, {(v, x), (v, w)}, {(x, w), (v, w)}}.

That is, in order to disconnect node u from node w, it is sufficient to either (i) remove
arc (u, v), or (ii) arcs (u, v) and (v, w), or (iii) arcs (x, w) and (v, w). These cut-sets
are minimal in the sense that no edges can be removed from any of them without
reconnecting u to w.

We evaluate this routing language over graphs in which each arc (i, j) is labelled as
{{"i- j"}}.

8.2.2 Optimisations

We compile each routing language with three different general optimisations:

std This is the unoptimised version against which we measure the relative performance
of the rest of the optimisations.

115

8. Performance

(a) clique(6) (b) ring(6) (c) grid(3)

Figure 8.5: Examples of clique, ring and grid topologies

share This optimisation enables maximal sharing of values. For example, strings are
shared using a hash-table, whilst lists are hash-consed and sets are represented
as Patricia trees.

memo This optimisation additionally enables function memoisation over maximally
shared datatypes. For example, both the list append and also set union operators
are memoised.

For the min paths routing language we additionally include the following algebraic
optimisation:

no min In addition to enabling the ‘memo’ optimisations, this optimisation eliminates
unnecessary set minimisations using the techniques described in Section 8.1.5.

8.2.3 Graphs

In general, the runtime performance of offline algorithms depends upon the statistical
properties of the graphs over which they are executed. For example, we expect graphs
with greater numbers of nodes and/or greater proportions of nodes with high degrees
to increase the time and memory requirements for the solution. We therefore control
for these factors by running our tests over a fixed range of topologies. Note that we
do not use random graph models, such as the Erdõs-Rényi [123] model because the
statistical properties of the generated graphs varies widely. We are also not concerned
with running our algorithms over realistic Internet topologies, because the generation
of such topologies remains an active area of research in its own right.

The first kind of graph uses the clique topology, illustrated in Figure 8.5(a). Here, every
node is connected to every other node (links are bidirectional in each of our topologies).
We denote the clique topology with n nodes by clique(n). This topology illustrates the
effects of large numbers of paths; there are n! simple paths in a clique with n nodes.
We note that whilst each pair of distinct nodes within the clique topology is directly

116

8. Performance

connected, the distribution of (simple) path lengths is heavily weighted towards longer
paths i.e. paths that traverse a greater number of arcs.

The next kind of graph uses the ring topology. We show an example of a ring topology
in Figure8.5(b). Here, every node is connected to exactly two other nodes to form a
cycle. We denote the ring topology with n nodes by ring(n). There are exactly two
simple paths between each pair of distinct nodes in the ring topology. Therefore this
topology demonstrates the effect of small numbers of paths.

The final kind of graph uses the grid topology, which is shown in Figure 8.5(c). The
nodes in a grid topology are connected to form a square array. Each internal node
has four connections to its neighbours. We denote the n × n grid topology by grid(n).
Compared to the clique topology, the grid topology has a greater proportion of paths
of a shorter length. The grid topology also has a greater proportion of minimal length
paths when compared to the ring topology. For grid(3), shown in Figure 8.5(c), there
are six simple paths of minimal length between diagonally opposite edge nodes.

We test the scaling effects of different optimisations by altering the sizes of our chosen
topologies. Some routing languages require relatively large topologies (e.g one hundred
nodes) in order for us to observe meaningful time and memory characteristics. Larger
topologies also allow us to amortise the costs of any overheads such as program startup
costs. We programmatically generate each topology size to facilitate the testing.

For more ‘interesting’ datatypes such as sets, lists and products, we expect that the
distribution of data used to label arcs may affect the time and memory characteristics of
the offline algorithms. Therefore we control for this factor by using fixed arc labellings.
We specify the particular arc labelling when describing each routing language.

8.2.4 Measurement

All tests are performed on a 32-bit GNU/Linux operating system running the Linux
2.6.26-2 SMP kernel. The generated code is compiled using GCC 4.3.2 with-O2, enabling
all optimisations that do not increase executable size. The test hardware is a 1.83GHz
Intel Core Duo with 1GB of RAM.

Timing data is obtained using the getrusage() system call at end of each test run.
Memory usage is read using the VmHWM field from /proc/self/status. This tells us
the virtual memory ‘high water mark’ (maximum) usage. The value is read both at
the start and the end of each test run so that we can subtract the constant amount of
memory used by the program code and static data.

Each test is repeated five times to obtain an average timing value. The memory usage
remains constant for repeated tests.

117

8. Performance

8.3 Results

8.3.1 Minimal-length paths

For the clique topology, there is a single minimal-length path between each pair of
nodes, and therefore each minimal set comprises a one-element list. We first examine
the time characteristics, shown in Figure 8.6(a). Here, the ‘memo’ and ‘no min’ opti-
misations only give a marginal benefit, whilst the ‘share’ optimisation gives a decrease
in performance. We hypothesise that the combination of the small set and list sizes
mean that most operations consume relatively little time even in the ‘std’ version, and
hence there is little scope for optimisation. Turning to the memory usage, shown in
Figure 8.7(a), we see that memoisation has a large space penalty (recall that this opti-
misation effectively introduces a space leak). The ‘no min’ optimisation reduces this
overhead by causing fewer inputs to be cached.

The ring topology has longer minimal-length paths on average than the clique topology
of the same degree. However, with the exception of diametrically opposite nodes, there
remains only a single minimal-length path between each pair of nodes. We hypothesise
that the longer average path lengths mean that the list append and length comparison
operations tend to be more expensive, and hence there is greater scope for optimisation.
Examining the time characteristics, shown in Figure 8.6(b), we see that memoisation
indeed gives a substantial time saving. The memory characteristics, presented in
Figure 8.7(b), show that sharing approximately halves the memory usage for a ring of
size 65. These substantial savings can be attributed to the low path diversity causing a
high degree of sharing.

The grid topology has a greater number of minimal-length paths. The corresponding
increase in average set size allows the no_min optimisation to give a substantial time
saving, as shown in Figure 8.6(c). The increase in path diversity eliminates the space
savings from sharing, as shown in Figure 8.7(c).

118

8. Performance

10−3

10−2

10−1

100

101

102

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Ti
m

e
/

s

n

std
share

memo
no min

(a) Clique topology

10−2

10−1

100

101

102

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Ti
m

e
/

s

n

std
share

memo
no min

(b) Ring topology

10−2

10−1

100

101

102

3 4 5 6

Ti
m

e
/

s

n

std
share

memo
no min

(c) Grid topology

Figure 8.6: CPU usage for minimal-length paths routing language.

119

8. Performance

105

106

107

108

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

M
em

or
y

us
ag

e
/

by
te

s

n

std
share

memo
no min

(a) Clique topology

105

106

107

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

M
em

or
y

us
ag

e
/

by
te

s

n

std
share

memo
no min

(b) Ring topology

105

106

107

108

109

3 4 5 6

M
em

or
y

us
ag

e
/

by
te

s

n

std
share

memo
no min

(c) Grid topology

Figure 8.7: Memory usage for minimal-length paths routing language.

120

8. Performance

8.3.2 K-best paths

The results from the k-best paths routing language are broadly similar to those from
the minimal-length paths routing language. The main differences can be explained by
the fact that we also admit up to k − 1 sub-optimal paths into each set (in this instance,
k = 5). Therefore the the ring and clique topologies see an appreciable increase in the
average set size, giving greater scope for optimisation in these cases.

For the clique topology times, shown in Figure 8.8(a), we see that memoisation does
indeed give an appreciable increase in performance in comparison to the minimal-
lengths paths example. Turning to the memory performance, shown in Figure 8.9(a),
the increase in memory usage for memoisation can be attributed both to the larger set
sizes as well as a greater number of different sets.

We now examine the performance for the ring topology. A notable change from
the minimal-length paths routing language is that sharing now gives an appreciable
decrease in execution time. This is shown in Figure 8.8(b). We hypothesise that
this is because there is greater scope for benefiting from sharing for list comparisons;
comparisons on identical lists now comprise just a single pointer equality test, and
there are a greater number of such tests due to the larger set sizes. Memory usage,
shown in Figure 8.9(b), remains similar to that for the minimal-length paths routing
language.

Finally, we examine the performance for the grid topology. Again, in comparison to
the minimal-length paths routing language, sharing now gives a slight decrease in
execution time. This is shown in Figure 8.8(c). Memory usage, shown in Figure 8.9(c).
again remains similar to that for the minimal-length paths routing language.

121

8. Performance

10−2

10−1

100

101

102

4 6 8 10 12 14 16 18 20 22 24

Ti
m

e
/

s

n

std
share

memo

(a) Clique topology

10−2

10−1

100

101

102

8 12 16 20 24 28 32 36 40 44 48

Ti
m

e
/

s

n

std
share

memo

(b) Ring topology

10−2

10−1

100

101

102

3 4 5 6 7

Ti
m

e
/

s

n

std
share

memo

(c) Grid topology

Figure 8.8: CPU usage for k-best paths routing language.

122

8. Performance

105

106

107

108

4 6 8 10 12 14 16 18 20 22 24

M
em

or
y

us
ag

e
/

by
te

s

n

std
share

memo

(a) Clique topology

105

106

107

108

8 12 16 20 24 28 32 36 40 44 48

M
em

or
y

us
ag

e
/

by
te

s

n

std
share

memo

(b) Ring topology

105

106

107

108

3 4 5 6 7

M
em

or
y

us
ag

e
/

by
te

s

n

std
share

memo

(c) Grid topology

Figure 8.9: Memory usage for k-best paths routing language.

123

8. Performance

8.3.3 Martelli’s algebra

The results for the Martelli routing language demonstrate that there are some routing
languages upon which our current optimisations appear to have little effect (for the
tested topologies). The Martelli routing language is the most expensive of the three
languages in terms of both time and memory.

For the clique topology, there are an exponential number of cut-sets for each pair of
nodes as a function of the number of nodes within the clique. Hence we are limited
to testing relatively small clique sizes. We see that sharing and memoisation both lead
to worse time characteristics (Figure 8.10(a)). However, sharing gives a slight benefit
for memory usage at n = 6, as shown in Figure 8.11(a). The memory requirements for
memoisation exceeded the capabilities of the test machine at n = 6. We hypothesise
that this is due to the construction of a large number of intermediate sets.

The ring topology has order O(n2) cut-sets for each pair of nodes, and therefore the
routing language can be tested with a greater number of nodes than for the clique
topology. Whilst sharing and memoisation still lead to larger times (Figure 8.10(b)),
we see that sharing has an appreciable benefit on memory usage (Figure 8.11(b)). This
may be due to a large proportion of identical cut-sets for different pairs of nodes.

Finally, the grid topology presents largely similar time and memory characteristics
to the clique topology. The timing performance is shown in Figure 8.10(c) and the
the memory performance is shown in Figure 8.11(c). In common with the other two
topologies, there is a reduction in memory usage for the sharing optimisation.

124

8. Performance

10−3

10−2

10−1

100

101

102

103

3 4 5 6

Ti
m

e
/

s

n

std
share

memo

(a) Clique topology

10−2

10−1

100

101

102

103

4 5 6 7 8 9 10 11 12 13 14

Ti
m

e
/

s

n

std
share

memo

(b) Ring topology

10−2

10−1

100

101

102

2 3

Ti
m

e
/

s

n

std
share

memo

(c) Grid topology

Figure 8.10: CPU usage for Martelli routing language.

125

8. Performance

105

106

107

3 4 5 6

M
em

or
y

us
ag

e
/

by
te

s

n

std
share

memo

(a) Clique topology

105

106

107

108

4 5 6 7 8 9 10 11 12 13 14

M
em

or
y

us
ag

e
/

by
te

s

n

std
share

memo

(b) Ring topology

105

106

107

108

2 3

M
em

or
y

us
ag

e
/

by
te

s

n

std
share

memo

(c) Grid topology

Figure 8.11: Memory usage for Martelli routing language.

126

8. Performance

8.4 Discussion

8.4.1 Relating results to optimisation techniques

We have demonstrated that in many cases it is possible to substantially optimise the
example routing languages in the offline case, although the exact benefits are dependent
upon the particular topology. We summarise the results below.

Sharing can give a small benefit in terms of execution time e.g. for the k-best paths
on the ring and grid topologies. However, the benefit is very much dependent upon
the particular routing language and topology. For example, sharing introduces a small
time penalty for the minimum-length paths routing language. The main benefit from
sharing appears to be the decrease in memory usage. For example, memory usage is
halved on the ring topology for the k-best paths at n = 50 (Figure 8.9(b)).

Memoisation can give large time improvements at the expense of large increases in
memory usage. For example, memoisation of the k-best paths routing language on the
grid topology at n = 7 has an approximate order-of-magnitude time improvement over
the standard variant (Figure 8.8(c)). However, this is associated with an approximate
order of magnitude increase in memory usage. (Figure 8.9(c)). We believe that it may be
possible to decrease the memory usage by reclaiming memoised entries after a period
of inactivity.

Turning to the ‘no min’ algebraic optimisation, we see that avoiding minimisation can
bring large benefits, although again this is dependent upon the particular topology.
For example, this optimisation applied to the minimum-length paths routing language
on the grid topology at n = 6 approximately halves the execution time of the ‘memo’
optimisation alone (Figure 8.6(c)). This optimisation can also reduce the number of
values that require caching, hence decreasing the memory usage for memoisation. On
the same test, this optimisation approximately halves memory usage of the ‘memo’
optimisation alone (Figure 8.7(c)).

The Martelli routing language demonstrates that not all algebras are currently amenable
to optimisation. We are only able to obtain a minimal memory performance increase
using the ‘share’ optimisation. Execution times increase for all optimisations. Research
suggests that it may be possible to apply algebraic optimisations to this algebra [121,
122], although this remains a topic for future work.

8.4.2 Applicability of results to online routing

We now place the results of this chapter in the context of online routing. We aim to
give some indication of the applicability of these results to the performance of online
routing algorithms that might be developed using the metarouting system.

127

8. Performance

We first make the distinction between the number of steps required to reach conver-
gence and the complexity of the operations within each step. In Chapter 2 we discussed
how under certain conditions it is possible bound the number of steps required for con-
vergence of routing algorithms. For example, the generalised Bellman-Ford algorithm
requires O(|V|3) steps providing that the algebra is increasing (§ 2.7.1). However, the
complexity of each step within an algorithm is dependent upon the particular alge-
bra. For example, Martelli’s algebra requires O(n2) comparisons in the worst case to
minimise a set with n elements.

All of the performance experiments presented in this chapter have used the offline
matrix algorithm. We now discuss the change in complexity when moving from an
offline algorithm to an online algorithm, as might be found in a deployed routing
system. In general, the convergence time of an online algorithm may be degraded by a
number of factors, including the arrival order of messages and topology changes. For
example, the distributed Bellman-Ford algorithm may take an exponential number of
steps to converge, and can also exhibit counting to infinity behaviour. Furthermore,
there is a decrease in sharing for online algorithms because metrics are distributed
between multiple routing daemons. This may reduce the benefits of sharing-related
optimisations, such as hash-consing. Accurately quantifying the complexity of an
online routing algorithm remains a current research topic.

Finally, we discuss the additional overhead imposed by re-implementing an existing
online routing protocol within the metarouting system. Philip Taylor has conducted
some initial experiments in this area, focusing upon BGP. The experiments compared
the performance of the generalised Quagga BGP algorithm with a BGP-like routing
algebra to the standard Quagga BGP routing protocol. The time and memory usage for
each protocol was measured whilst processing routing entries from a publicly available
BGP routing table dump. An approximate ten percent decrease in execution speed was
observed for the generalised BGP algorithm when compared to the standard BGP
routing protocol. There was also a slight decrease in memory usage for the generalised
BGP algorithm, although this was perhaps due to the fact that the associated BGP-like
routing algebra used a simplified AS path representation. Additional experiments are
needed to more accurately quantify the performance changes when re-implementing
current routing protocols within the metarouting system.

128

C 9

Deriving forwarding paths from
routing solutions

In this section we clarify the distinction between routing and forwarding, and demon-
strate several methods for obtaining forwarding paths from routing solutions. We take
a high-level approach which ignores implementation details. Our approach is to use
an algebraic construction known as a semimodule. Whilst this is currently an abstract
model, future work involves integrating it with the metarouting system.

We commence by discussing the differences between routing and forwarding (§ 9.1).
We then show how to construct forwarding tables from routing tables by importing
destinations that are external to the routing domain (§ 9.2). Next, we generalise this
model using semimodules (§ 9.3). These structures allow us to model common Internet
routing idioms such as hot-potato and cold-potato routing. We then show how to use our
formalism to model OSPF forwarding (§ 9.4). We conclude by considering the case in
which the semiring or semimodule distributivity laws no longer hold (§ 9.5).

Both this chapter and Chapter 10 are based upon joint work with Timothy Griffin that
is published in [124]. However, the specific text of these chapters is the author’s own
work.

9.1 Introduction

Recall from Chapter 1 that routers use routing protocols to dynamically compute routing
tables. The data from routing tables is then used to automatically construct forwarding
tables, which control the paths that datagrams follow as they traverse the network.
We consider routing to be a function that computes paths within a specified routing
domain, whilst forwarding determines how these paths are actually used to carry
traffic.

129

9. Deriving forwarding paths from routing solutions

1

2

3

4

5

6

5 42

1

4

3

A =

1 2 3 4 5

1 ∞ 2 1 6 ∞

2 ∞ ∞ ∞ ∞ 4
3 ∞ 5 ∞ 4 3
4 ∞ ∞ ∞ ∞ ∞

5 ∞ ∞ ∞ ∞ ∞

(b) Adjacency matrix

R = A∗ =

1 2 3 4 5

1 0 2 1 5 4
2 ∞ 0 ∞ ∞ 4
3 ∞ 5 0 4 3
4 ∞ ∞ ∞ 0 ∞

5 ∞ ∞ ∞ ∞ 0

(a) Labelled graph (c) Routing matrix

Figure 9.1: Example of algebraic routing using the MinPlus semiring

Routing and forwarding have similar roles, and the terms are often used interchange-
ably. In the simplest case, the paths that are used for forwarding are exactly those
that have been computed by routing. However, even in this case we see a distinction;
forwarding must select between paths that have equal cost to the same destination.
Possible choices include randomly choosing a path or load-balancing traffic between
several equal-cost paths.

In this chapter we model the infrastructure of a network as a directed graph G = (V,E).
Given a pair of nodes i, j ∈ V, routing computes a set of paths in G that can be used to
transit data from i to j. We algebraically model routing tables using matrix semirings.
A network-wide routing table is represented as a V × V routing matrix R that satisfies
the equation

R = (A ⊗ R) ⊕ I,

where A is the adjacency matrix induced by a graph labelled over a semiring S. Each
matrix entry R(i, j) in fact corresponds to the minimal-cost path weight from i to j, which
is implicitly associated with a set of optimal paths from node i to node j. Providing that
the semiring is selective, then it is straightforward to recover the associated paths. In
Chapter 2 we described how various algorithms may be used to compute the routing
matrix R = A∗ from the adjacency matrix.

We use the example in Figure 9.1 to briefly recap the algebraic approach to the con-
struction of routing matrices. Figure 9.1(a) presents a simple five node graph with
integer labels and Figure 9.1(b) shows the associated adjacency matrix. We wish to
compute shortest-distances between each pair of nodes and therefore we compute the

130

9. Deriving forwarding paths from routing solutions

closure using the semiring MinPlus = (N∞, min, +), The resulting matrix is given in
Figure 9.1(c). It is straightforward to recover the corresponding paths because MinPlus
is selective. That is, for all x, y ∈ S we have x ⊕ y ∈ {x, y}. Hence the computed weights
actually correspond to the weights of individual paths. The bold arrows in Figure 9.1(a)
denote the shortest-paths tree rooted at node 1; the corresponding path weights are
given in the first row of the matrix in Figure 9.1(c).

In this chapter we build upon this model by assuming that there is a set of external
destinations D that are independent of the network. Destinations can be directly attached
to any number of nodes in the network. We model the attachment information using a
V×D mapping matrix M. The entry M(i, d) contain a cost associated with the attachment
of external destination d to infrastructure node i.

Forwarding then consists of finding minimal-cost paths from nodes i ∈ V to destinations
d ∈ D. We model forwarding using a V×D forwarding matrix F, where each entry F(i, d)
is implicitly associated with a set of paths from node i to destination d. We treat the
construction of F as the process of solving the equation

F = (A B F) �M,

where F and M contain entries in a semimodule N = (N, �, B) over the semiring S. We
present several semimodule constructions that model common Internet forwarding
idioms such as hot-potato and cold-potato forwarding. Each such method potentially
leads to a different set of forwarding paths; the examples in this chapter all share the
same routing matrix, yet have distinct forwarding paths.

In Chapter 10 we again extend this model to show how mapping tables can themselves
be generated from forwarding tables. This provides a model of a simple type of route
redistribution between distinct routing protocols.

9.2 Attaching destinations

As before, suppose that our network is represented by the graph G = (V, E), labelled
with elements from the semiring S. Let the external nodes be chosen from some set D,
satisfying V∩D = ∅. Attach external nodes to G using the attachment edges E′ ⊆ V×D. In
the simplest case, the edges in E′ have weights from S, although in the next section (§ 9.3)
we show how to relax this assumption. Let the V × D mapping matrix M represent the
attachment edges.

We now wish to compute the V × D matrix F of shortest-path weights from nodes in
V to nodes in D. We term F a forwarding solution because it comprises the information
required to reach destinations, instead of other infrastructure nodes. We compute F by

131

9. Deriving forwarding paths from routing solutions

post-multiplying the routing solution R by the mapping matrix M. That is, for i ∈ V
and d ∈ D, we have

F(i, d) = (R ⊗M)(i, d)

=

⊕∑
k∈V

R(i, k) ⊗M(k, d)

=

⊕∑
k∈V

δ(i, k) ⊗M(k, d).

Hence we see that F(i, d) corresponds to the shortest total path length from i to d. In
other words, F solves the forwarding equation

F = (A ⊗ F) ⊕M.

Note that we are able to change the value of M and recompute F without recomputing
R. From an Internet routing perspective this is an important property; if the external
information is dynamically computed (by another routing protocol, for example) then
it may frequently change, and in such instances it is desirable to avoid recomputing
routing solutions.

We illustrate this model of forwarding in Figure 9.2. The labelled graph of Figure 9.2(a)
is based upon that in Figure 9.1(a), with the addition of two external nodes: d1 and
d2. The adjacency matrix A remains as before, whilst the mapping matrix M, given
in Figure 9.2(b), contains the attachment information for d1 and d2. The forwarding
solution F that results from multiplying R by M is given in Figure 9.2(c). Again, it is
easy to verify that the elements of F do indeed correspond to the weights of the shortest
paths from nodes in V to nodes in D.

9.3 Generalised attachment

Within Internet routing, it is common for the entries in routing and forwarding tables to
have distinct types, and for these types to be associated with distinct order relations. We
therefore generalise the import model of the previous section to allow this possibility.
In particular, we show how to solve this problem using algebraic structures known as
semimodules.

9.3.1 Semimodules

A (left) semimodule is an algebraic structure N = (N, �, B) that is defined over a
semiring S = (S, ⊕, ⊗). The operator � ∈ N ×N→ N is used to summarise elements of
N, whilst the operator B ∈ S ×N → N can be viewed as a method of ‘lifting’ elements
from S into N.

132

9. Deriving forwarding paths from routing solutions

1

2

3

4

5

d1

d2

6

5 42

1

4

3

2

3

3

1

M =

d1 d2

1 ∞ ∞

2 3 ∞

3 ∞ ∞

4 ∞ 1
5 2 3

(b) Mapping matrix

R ⊗M =

d1 d2

1 5 6
2 3 7
3 5 5
4 9 1
5 2 3

(a) Graph with external information (c) Forwarding matrix

Figure 9.2: Example of combining routing and mapping matrices to create a forwarding
matrix

Analogously to a semiring, a semimodule must satisfy several algebraic properties.
Firstly, we require that (N, �) is a commutative semigroup. Secondly, the operators
must satisfy the distributivity laws

x B (m � n) = (x Bm) � (x B n),
(x ⊕ y) Bm = (x Bm) � (y Bm),

where x, y ∈ S and m, n ∈ N. Thirdly, the semigroup multiplicative identity must
satisfy the property α⊗ B m = m. Finally, we require the existence of an identity for
�, which we denote as α�. This value must satisfy the properties α⊕ B m = α�, and
x B α� = α�. In our applications, � is often idempotent.

A right semimodule N = (N, �, C) instead has an operator C ∈ N × S → N, and must
satisfy ‘right’ versions of the previous properties. We note that a semimodule can be
seen as an instance of a semigroup transform (Chapter 7), where the label type is S.
However, a semimodule has additional algebraic structure that is not required of a
semigroup transform. For example, there is an ‘internal’ ⊕ operator.

We now show our use of a semimodule is a natural consequence of combining routing
and mapping entries of different types.

9.3.2 Using semimodules for forwarding

Assume that we are using the semiring S = (S, ⊕, ⊗) and suppose that we wish to
construct forwarding matrices with elements from the idempotent, commutative semi-

133

9. Deriving forwarding paths from routing solutions

group N = (N, �). Furthermore, suppose that the mapping matrix M contains entries
over N. In order to compute forwarding entries, it is necessary to combine routing
entries with mapping entries, as before. However, we can no longer use the multi-
plicative operator from S because the mapping entries are of a different type. Therefore
we introduce an operator B ∈ (S × N) → N for this purpose. We can now construct
forwarding entries as

F(i, d) = (R BM)(i, d)

=

�∑
k∈V

R(i, k) BM(k, d).
(9.1)

It is also possible to equationally characterise the resulting forwarding entries, as before.
Assume that R is a routing solution i.e. it satisfies the routing equation

R = (A ⊗ R) ⊕ I.

Then, providing that the algebraic structure N = (N, �, B) is a semimodule, F = R BM
is a solution to the forwarding equation

F = (A B F) �M.

Substituting F = A∗ BM into the left-hand side of this equation, we obtain

(A B (A∗ BM)) �M
= ((A ⊗A∗) BM) �M
= ((A ⊗A∗) ⊕ I) BM
= A∗ BM

In other words, we can solve for F with F = A∗ BM. Significantly, we are able to use
semimodules to model the mapping information whilst still retaining a semiring model
of routing.

9.3.3 Hot-potato semimodule

We now develop two important semimodule constructions that model the most com-
mon manner in which routing and mapping are combined: the hot-potato and cold-potato
semimodules. First define an egress node for a destination d as a node k within the rout-
ing domain that is directly attached to d. Hot-potato forwarding to d first selects paths
to the closest egress nodes for d and then breaks ties using the mapping information.
In contrast, cold-potato forwarding first selects paths to the egress nodes for d with the
most preferred mapping values, and then breaks ties using the routing distances.

We now formally define the hot-potato semimodule. Let S = (S, ⊕S, ⊗S) be an idem-
potent semiring with (S, ⊕S) selective and let T = (T, ⊕T) be a monoid. The hot-potato
semimodule over S is defined as

Hot(S, T) = ((S × T) ∪ {∞}, ~⊕, Bfst),

134

9. Deriving forwarding paths from routing solutions

where s1Bfst (s, t) = (s1⊗S s, t), s1Bfst∞ = ∞ and ((S×T)∪{∞}, ~⊕) is the left lexicographic
product semigroup. In common with semirings, we can lift semimodules to operate
over (non-square) matrices. When lifting the hot-potato semimodule, we rename the
multiplicative operator fromBfst toBhp. This is because the lifted multiplicative operator
no longer simply applies its left argument to the first component of its right argument.
In fact, we shall shortly see that the cold-potato semimodule uses the same underlying
multiplicative operator but with a different additive operator, and therefore has a
different lifted multiplicative operator.

The behaviour of the hot-potato semimodule can be algebraically characterised as
follows. Suppose that for all j ∈ V and d ∈ D, M(j, d) ∈ {(1S, t), ∞T} where 1S is the
multiplicative identity for S and t is some element of T. Then from Equation 9.1 it is
easy to check that

(R Bhp M)(i, d) =

~⊕∑
j∈V

M(j, d)=(1S, t)

(R(i, j), t).

That is, as desired, the mapping metric is simply used to tie-break over otherwise
minimal-weight paths to the edge of the routing domain.

We illustrate the hot-potato model of forwarding in Figure 9.3. This example uses the
semimodule Hot(MinPlus, Min), where Min = (N∞, min). The graph of Figure 9.3(a) is
identical to that of Figure 9.2(a), but now the attachment arcs of d1 and d2 are weighted
with elements of the hot-potato semimodule. The associated mapping matrix is given
in Figure 9.3(b), whilst the resulting forwarding table is shown in Figure 9.3(c). Note
that 0 is the multiplicative identity of the MinPlus semiring. Comparing this example
to Figure 9.2, we see that node 1 reaches d2 via egress node 5 instead of node 4. This is
because the mapping information is only used for tie-breaking, instead of being directly
combined with the routing distance. Also, in this particular example, it is never the
case that there are multiple paths of minimum cost to egress nodes, and therefore no
tie-breaking is performed by the mapping information.

9.3.4 Cold-potato semimodule

Turning to cold-potato forwarding, the associated semimodule again combines routing
and attachment information using the lexicographic product, but with priority now
given to the attachment component. As before, let S = (S, ⊕S, ⊗S) be a semiring and
T = (T, ⊕T) be a monoid, but now with T idempotent and selective. The cold-potato
semimodule over S is defined as

Cold(S, T) = ((S × T) ∪ {∞}, ~⊕, Bfst).

Note that (S × T, ~⊕) the right lexicographic product semigroup. Again, when lifting
the cold-potato semimodule to operate over matrices we rename the multiplicative

135

9. Deriving forwarding paths from routing solutions

1

2

3

4

5

d1

d2

6

5 42

1

4

3

(0, 2)

(0, 1)

(0, 3)

(0, 3)

M =

d1 d2

1 ∞ ∞

2 (0, 3) ∞

3 ∞ ∞

4 ∞ (0, 1)
5 (0, 2) (0, 3)

(b) Mapping matrix

R Bhp M =

d1 d2

1 (2, 3) (4, 3)
2 (0, 3) (4, 3)
3 (3, 2) (3, 3)
4 (7, 2) (0, 1)
5 (0, 2) (0, 3)

(a) Graph with external information (c) Forwarding matrix

Figure 9.3: Example of hot-potato forwarding

1

2

3

4

5

d1

d2

6

5 42

1

4

3

(0, 3)

(0, 3)

(0, 1)

(0, 2)

M =

d1 d2

1 ∞ ∞

2 (0, 3) ∞

3 ∞ ∞

4 ∞ (0, 1)
5 (0, 2) (0, 3)

(b) Mapping matrix

R Bcp M =

d1 d2

1 (4, 2) (5, 1)
2 (4, 2) (9, 1)
3 (3, 2) (4, 1)
4 (7, 2) (0, 1)
5 (0, 2) (7, 1)

(a) Graph with external information (c) Forwarding matrix

Figure 9.4: Example of cold-potato forwarding

operator from Bfst to Bcp.

Figure 9.4 illustrates the cold-potato model of forwarding. This example uses the cold-
potato semimodule Cold(MinPlus, Min), but is otherwise identical to Figure 9.3. It is
easy to verify that priority is now given to the mapping information when selecting
egress nodes.

Within Internet routing, hot-potato forwarding corresponds to choosing the closest

136

9. Deriving forwarding paths from routing solutions

egress point from a given routing domain. This is the default behaviour for the Border
Gateway Protocol (BGP) routing protocol [9] because it tends to minimise resource
usage for outbound traffic within the domain. In contrast, cold-potato forwarding
allows the mapping facility to select egress nodes, and hence can lead to longer paths
being chosen within the domain. As a result, cold-potato forwarding is less commonly
observed in general on the Internet. However, one specific use is within client-provider
peering relations in order to minimise the use of the client’s network resources for
inbound traffic (at the possible expense of increased resource usage on the provider’s
network). This is precisely the reason that the BGP MED attribute is often used (§ 1.4.2).

9.4 Modelling OSPF

In this section we use our semimodule model of attachment to abstractly describe how
the OSPF routing protocol [125] constructs forwarding tables. We demonstrate that this
process involves multiple mapping tables, with one for each different type of destination.
The tables are then combined using a variant of the cold-potato semimodule to produce
a single forwarding table. Note that for simplicity we ignore OSPF areas.

OSPF makes the distinction between routing and mapping, representing the corre-
sponding tables as different structures within routing updates. This is in marked
contrast to routing protocols such as BGP and RIP, where routing and mapping infor-
mation are amalgamated within routing updates. The separated routing and mapping
of OSPF permits a significant amount of additional policy control when computing
forwarding tables to external destinations.

In fact, OSPF defines three different kinds of destinations, each of which can be modelled
using a different mapping table. The first type, which we term type 0, corresponds to
destinations that are directly attached to an OSPF router. The second and third types,
we are termed type 1 and type 2 respectively [11], correspond to different ways of
attaching external destinations. OSPF strictly prefers type 0 destinations to type 1
destinations, and type 1 destinations to type 2 destinations. Type 2 destinations may
additionally be associated with another, statically-specified metric. This latter metric is
given priority to the computed metric, giving rise to a form of cold-potato forwarding.
In this section we generalise the static metric by assuming that it may be modelled
using a commutative, idempotent monoid, U = (U, ⊕U).

Building upon our previous examples, we present an example network in Figure 9.5(a).
We use this example to illustrate our model of OSPF forwarding. Here we have that U
is a bandwidth metric. In particular, U = (N∞, max). We note that the annihilator for
this monoid is ωU = 0.

137

9. Deriving forwarding paths from routing solutions

1

2

3

4

5

d1

d2

6

5 42

1

4

3

((1, ∞), 3)

((2, 10), 0)

((0, ∞), 2)

((2, 20), 0)

(a) Graph with external information

M =

d1 d2

1 ∞ ∞

2 ((1, ∞), 3) ∞

3 ∞ ∞

4 ∞ ((2, 10), 0)
5 ((0, ∞), 2) ((2, 20), 0)

R Bcp M =

d1 d2

1 ((0, ∞), 6) ((2, 20), 4)
2 ((0, ∞), 6) ((2, 20), 8)
3 ((0, ∞), 5) ((2, 20), 3)
4 ((0, ∞), 9) ((2, 20), 7)
5 ((0, ∞), 2) ((2, 20), 0)

(b) Mapping matrix (c) Forwarding matrix

Figure 9.5: Example of idealised-OSPF forwarding

Our model uses the following set, into which we embed each destination type:

W = (({0, 1, 2} ×U) ×N∞) ∪ {∞}.

We define the embedding into W as follows:

Type Metric Embedding
0 m , ∞ ((0, ωU), m)
1 m , ∞ ((1, ωU), m)
2 u , ωU ((2, u), 0)

The elements of W are ordered using the right lexicographic product

(W, ~⊕) = ({0, 1, 2},min) ~× (U,⊕U) ~× (N∞, min).

This order does not alter the pre-existing preference between metrics of the same
destination type. However, for destinations of different types, the order is defined so as
to respect the preference defined within the OSPF specification i.e. type 0 destinations
are strictly preferred to type 1 destinations, etc. We then represent each destination
type t as a separate mapping matrix Mt. Whilst we do not discuss how these matrices
might be constructed, it is straightforward to imagine how this might be done. For our

138

9. Deriving forwarding paths from routing solutions

example in Figure 9.5(a), we obtain the following mapping matrices:

M0 M1 M2

d1 d2

1 ∞ ∞

2 ∞ ∞

3 ∞ ∞

4 ∞ ∞

5 ((0, ∞), 2) ∞

d1 d2

1 ∞ ∞

2 ((1, ∞), 3) ∞

3 ∞ ∞

4 ∞ ∞

5 ((1, ∞), 17) ∞

d1 d2

1 ∞ ∞

2 ((2, 40), 0) ∞

3 ∞ ∞

4 ∞ ((2, 10), 0)
5 ((2, 10), 0) ((2, 20), 0)

We then construct a single mapping matrix M by combining the individual mapping
matrices using the order (W, ~⊕):

M = M0 ~⊕M1 ~⊕M2.

Returning to our example, the resulting mapping matrix is shown in Figure 9.5(b).
Finally, we define the OSPF semimodule as

OSPF(U) = (W, ~⊕, Bsnd)

where
m Bsnd ((l, u), m′) = ((l, u), m + m′)

m Bsnd∞ = ∞.

This structure is a variant of the cold-potato semimodule; here, instead of combining
routing data with the first component of the mapping information and using the right
lexicographic order, we instead combine it with the second component and use the left
lexicographic order. Hence we refer to the lifted multiplicative operator as Bcp.

We then construct the OSPF forwarding matrix as F = RBcp M. The forwarding matrix
for our example is illustrated in Figure 9.5(c). For destination d1, we see that the type 0
route is given priority over the type 1 route. In contrast, there are two type 2 routes for
destination d2, and hence the bandwidth component is used as a tie-breaker.

9.5 The non-distributive case

In Section 9.3.2 we demonstrated how to directly solve the forwarding equation F =

(A B F) �M. However, in some cases it may also be possible to solve this equation
iteratively. That is, we define a sequence of approximations

F[0] = M,

F[k+1] = (A B F[k]) �M.

In the case that A∗ exists, and (N, �, B) is a semimodule over S, then we can show that
lim
k→∞

F[k] exists and that it has the value A∗ BM.

139

9. Deriving forwarding paths from routing solutions

Two problems may be encountered when attempting to use the iterative solution
method upon models of Internet routing protocols. The first problem is that S may not
be a semiring due to the semiring distributivity laws not holding. However, even in
such a situation, it may be possible to obtain a locally optimal solution using the iterative
method [91]. Now suppose that S is a semiring, but that the semimodule distributivity
axioms do not hold. Again, in such a situation it may be possible to extend the work
of [91] to show that the iterative method outlined above does indeed converge to locally
optimal solution. Both of these areas are topics for future work.

140

C 10

Simple route redistribution

In this chapter we describe a mechanism for the interaction of routing protocols. We
term this facility simple route redistribution after the mechanism for protocol interaction
found in current routers. We build the redistribution model using the attachment model
from Chapter 9. We commence by introducing simple route redistribution (§ 10.1),
before describing the model in detail (§ 10.2). We then conclude by relating our re-
distribution model to proposals for creating a more scalable routing and addressing
system for the Internet (§ 10.3).

10.1 Introduction

Recall from Chapter 1 that route redistribution is a mechanism for copying routes
between RIBs. It is often used for ‘joining’ routing protocols, such as when merging
pairs of networks. Redistribution can also increase resilience by permitting paths to be
used within an alternative routing domain. Route redistribution is a local mechanism;
it is enabled on individual routers. However, route redistribution has global effect;
redistributing routes from routing domain A to routing domain B may affect route
selection for any router within B.

In Section 1.3 we discussed the problems that are associated with current route redis-
tribution mechanisms; principally, route redistribution can cause routing oscillations
and forwarding loops [24, 27, 28, 29]. Detecting whether a given set of configurations
is subject to unsafe behaviour is NP-hard. This has led to the creation of informal sets
of guidelines [27] for safely configuring route redistribution.

In this chapter we take a different approach to the problem of safe redistribution. In
contrast to current approaches that attempt to understand the low-level details of re-
distribution [28], we adopt a top-down model. This leads us to consider redistribution
as an abstraction that is built on top of routing protocols. Our simple route redistri-
bution model only affects forwarding, and not routing. This avoids our model from

141

10. Simple route redistribution

being overly entangled in low-level implementation details. Indeed, we believe that
introducing this level of abstraction is essential for reasoning about the effects of re-
distribution and eliminating safety violations. Our model is notable in being the first
algebraic account of route redistribution.

Our simple route redistribution model builds upon the attachment model of Chapter 9
to allow forwarding between multiple domains (here, we limit ourselves to modelling
the case where there are two routing domains, although it is possible to generalise to a
greater number). Our redistribution model uses the forwarding table from one domain
to dynamically construct the mapping table of another. That is, when redistributing
from A to B, domain B exploits the forwarding paths from A to reach the destination
of A. Note that the forwarding matrices of A may themselves be constructed using
semimodules, as described in Chapter 9. Our model additionally demonstrates that it
is possible for each routing/forwarding domain to use a different semiring/semimodule
pair.

10.2 Simple route redistribution

In this section we describe specifics of the simple route redistribution model. Begin by
assuming that there are two routing domains, G1 = (V1, E1) and G2 = (V2, E2). Also,
assume that there is a set of destinations, D, with V1, V2 and D pair-wise disjoint.
Let G1 be connected to G2 with the attachment arcs E1,2 ⊆ V1 × V2, represented as the
V1×V2 bridging matrix B1,2. Similarly, let G2 be connected to D with the attachment arcs
E2,d ⊆ V2×D, represented as the V2×D attachment matrix M2. Let F2 be the forwarding
matrix for G2. We demonstrate how to construct a forwarding matrix F1 from V1 to D.

We use Figure 10.1 as a running example. Figure 10.1(a) illustrates two graphs, G1 and
G2. The second graph, G2, is directly connected to destinations d1 and d2 and therefore
we are able to compute the forwarding matrix for G2 using the method from Section 9.
We model the routing in G2 in the standard manner, using the bandwidth semiring
MaxMin = (N∞, max, min). The resulting routing matrix R2 is given in Figure 10.1(c).
Forwarding is then modelled using the cold-potato semimodule Cold(MaxMin,Min),
where Min = (N∞, min). The forwarding matrix is constructed as F2 = R2 Bcp M2,
where M2 is the mapping matrix for G2. We give the mapping and forwarding matrices
in Figures 10.1(b) and 10.1(d) respectively.

In order to compute a forwarding matrix from V1 to D, we must first construct a map-
ping matrix M1 from V1 to D by combining the forwarding matrix F2 from G2 with
the bridging matrix B1,2. Let the forwarding in G2 be modelled using the semimod-
ule N2 = (N2, �2, B2) and let the bridging matrix be modelled using the semigroup
(N1, �1). We combine the forwarding and bridging information using a right semimod-

142

10. Simple route redistribution

1

2

3

4

5G1

4
3 3

1

2

2

4

6

7

8

9

G2 1020

30

40

d1

d2

(0, (∞, 0))

(0, (∞, 0))

(∞, 3)

(∞, 1)

(∞, 2)

(∞, 1)

(a) Multiple graphs with external information

M2 =

d1 d2

6 (∞, 3) ∞

7 ∞ ∞

8 (∞, 2) (∞, 1)
9 ∞ (∞, 1)

 R2 =

6 7 8 9

6 ∞ 20 30 20
7 20 ∞ 20 40
8 30 20 ∞ 20
9 20 40 20 ∞

 F2 =

d1 d2

6 (30, 2) (30, 1)
7 (20, 2) (40, 1)
8 (∞, 2) (∞, 1)
9 (20, 2) (∞, 1)

(b) G2 mapping matrix (c) G2 routing matrix (d) G2 forwarding matrix

B1,2 =

6 7 8 9

1 ∞ ∞ ∞ ∞

2 ∞ ∞ ∞ ∞

3 ∞ ∞ ∞ ∞

4 (0, (∞, 0)) ∞ ∞ ∞

5 ∞ (0, (∞, 0)) ∞ ∞

M1 =

d1 d2

1 ∞ ∞

2 ∞ ∞

3 ∞ ∞

4 (0, (30, 2)) (0, (30, 1))
5 (0, (20, 2)) (0, (40, 1))

(e) G1 to G2 bridging matrix (f) G1 mapping matrix

R1 =

1 2 3 4 5

1 0 3 1 5 5
2 3 0 2 2 3
3 1 2 0 4 4
4 5 2 4 0 3
5 5 3 4 3 0

F1 =

d1 d2

1 (5, (30, 2)) (5, (40, 1)
2 (2, (30, 2)) (2, (30, 1)
3 (4, (30, 2)) (4, (40, 1)
4 (0, (30, 2)) (0, (30, 1)
5 (0, (20, 2)) (0, (40, 1)

(g) G1 routing matrix (h) G1 forwarding matrix

Figure 10.1: Example of simple route redistribution

143

10. Simple route redistribution

ule (N1, �1, C1) over N2 i.e. with C1 ∈ (N1 ×N2)→ N1. Then we compute the mapping
matrix from G1 as M1 = B1,2 C1 F2.

Returning to Figure 10.1, the bridging matrix B1,2 is illustrated in Figure 10.1(e). We
combine the forwarding matrix F2 with B1,2 using the right version of the semimodule

Hot(MinPlus, Cold(MaxMin,Min)).

The resulting mapping matrix M1 = B1,2 Chp F2 is illustrated in Figure 10.1(f).

Finally, we must combine the mapping matrix M1 with the routing solution R1. Suppose
that R1 has been computed using the semiring S. Then we construct a left semimodule
(N1, �1, B1) over S. Compute the forwarding matrix for G1 as

F1 = R1 B1 M1 = R1 B1 (B1,2 C1 F2)

Hence we see that we have in fact used a pair of semimodules with identical ad-
ditive components: a left semimodule (N1, �1, C1) over N2 and a right semimodule
(N1, �1, B1) over S.

Completing the example of Figure 10.1, the routing matrix for G1 is computed using
the semiring MinPlus. The resulting matrix R1 is shown in Figure 10.1(g). We combine
R1 with the mapping matrix M1 using the left version of the semimodule

Hot(MinPlus, Cold(MaxMin,Min)).

The resulting forwarding table F1 is given in Figure 10.1(h). The bold arrows in Fig-
ure 10.1(a) denote the forwarding paths from node 1 to destinations d1 and d2. Note that
the two egress nodes (4 and 5) from G1 are at identical distances from 1, and therefore
the bandwidth components from G2 are used as tie-breakers. This results in a different
egress point for each destination.

Future work might involve extending the simple redistribution model of Section 10.2
to take account of the situation where V1, V2 are D not pair-wise disjoint. A practical
instance of this situation occurs when routing domains overlap. This forces routers
to select between multiple routes (each from a different routing protocol) to the same
destination. Recall from Chapter 1 that the current mechanism to resolve this ambiguity
is administrative distance, whereby the protocols are statically ‘ranked’. For example,
routes from OSPF may be preferred to those from RIP. Algebraically, this may be
modelled using an ordered disjoint union, although additional work remains to be
done in this area.

10.3 Relation to routing scalability problem

In this section we conclude by relating our simple redistribution model to proposals
for creating a more scalable routing and addressing system for the Internet.

144

10. Simple route redistribution

10.3.1 IAB problem statement

The Internet Architecture Board (IAB) Routing and Addressing Workshop, which oc-
curred in 2006, was convened to ‘develop a shared understanding of the problems that
the large backbone operators are facing regarding the scalability of today’s Internet
routing system’ [126]. The main consensus of the workshop was that it is essential
to create a ‘scalable routing and addressing system, one that is scalable in the face of
multihoming, and that facilitates a wide spectrum of traffic engineering (TE) require-
ments’ [126].

Currently, the full BGP routing table results in over 300,000 entries within the forward-
ing table, and the trend is for this number to keep increasing at a super-linear rate [1].
Increased numbers of routes lead to increased BGP convergence times. They also
require upgrades to the amount of FIB memory, which includes the more expensive
Content Addressable Memory (CAM) type. The predicted trend is that routers will
become increasingly expensive due to the ever-more specialised technology needed to
handle the high growth rate of the core routing table [126].

One primary reason for the growth of the core routing table is that many edge networks
are requesting the assignment of provider-independent (PI) addresses. Such address
blocks are assigned to the edge network themselves, and are therefore not topologically
aggregable. This contrasts with the traditional approach whereby edge networks are
given provider-assigned (PA) addresses, which are taken from the address blocks of
service providers. The main advantage of PI addresses over PA address is that they
permit a greater degree of traffic engineering at multi-homed sites. PI addresses also
allow edge networks to avoid renumbering when changing providers.

10.3.2 Locator/identifier separation

One popular approach to addressing the Internet scalability problems is to disentan-
gle the notions of host location and host identity. These two concepts are currently
intertwined in IP networking, often necessitating the use of PI addressing to allow
traffic engineering. The essential idea in a locator/identifier separation scheme is that
each end-host has a long-term identifier that is independent of any networks that the
host might be attached to. Each network interface on a host then has a topologically-
significant locator, which may also be thought of as a network prefix. Locators remain
restricted to the network layer, whilst identifier are used at the transport layer and
above.

Locator/identifier separation allow edge-network egress routers the ability to rewrite
locators, permitting traffic engineering and also mobility (in some proposals), without
resorting to PI addressing [127]. Critically, locator rewriting does not affect transport-
level connectivity. This is because locators are restricted to the network layer, and

145

10. Simple route redistribution

thus are free to change without affecting upper-layer protocols. Note that one minor
disadvantage of locator/identifier separated schemes is that legacy protocols such as
FTP might break due to their application-level use of locators.

Specific proposals for locator/identifier separated architectures include Shim6 [128],
ILNP [129], as well as the earlier GSE proposal [130]. Shim6 primarily focuses upon
load-sharing and failover for multi-homed sites, whereas ILNP is more ambitious in
supporting both traffic engineering and mobility. ILNP relies on DNS to map DNS
names to identifier and locator values.

We view metarouting as being generally applicable in the context of a locator/identifier
separated Internet; such an architecture still necessarily requires routing protocols to
compute paths both within the core network and also at edge networks. We might
even imagine a situation where the adoption of a locator/identify split allows increased
innovation in routing protocol design.

10.3.3 Map/encap

An alternative approach to addressing Internet scalability problems is to encapsulate
(tunnel) traffic as it passes over the core Internet. In this way, only the addresses of core
routers need be present in the routing table. Such schemes, as found in LISP [41] and its
variants, often use the terms locator and identifier, although with markedly different
meanings from the previous section; locators now refer to the addresses of routers,
whilst identifiers are the addresses of edge nodes. Ironically, the pure meaning of
locators and identifiers still remain intertwined with this approach. Prior to performing
encapsulation, ingress edge routers must consult a mapping service to translate from
(impure) end-node identifiers to egress router locators. Hence this approach is often
given the name map/encap.

Recent work suggests that adopting a map/encap scheme for the Internet might lead to
a reduction of two orders of magnitude in the number of FIB entries [131]. However,
this figure is dependent upon a number of factors, such as a universal adoption map/en-
cap. An additional benefit of several map/encap proposals is that it is only necessary
to modify edge routers; end-hosts are unaffected, in contrast to pure locator/identi-
fier schemes. However, a disadvantage of map/encap is that host mobility remains
problematic; a roaming host must still change its (impure) identifier, with associated
disruptions to transport-level connectivity.

10.3.4 Simple route redistribution as a model of map/encap

The simple route redistribution model can be viewed as a model of a map/encap system.
Within our model, destinations D correspond to the names of edge nodes, whilst the

146

10. Simple route redistribution

AS1 AS2

AS3 AS4

P

Peer Peer

Provider

Customer

Provider

Customer

Figure 10.2: Example of AS-level connectivity graph illustrating potential for distribu-
tivity violations. AS 3 will normally chose customer route over peer route, irrespective
of the preferences of AS 1.

node addresses V1, V2 correspond to core router addresses. Routing matrices R are
analogous to core routing tables, containing only node addresses v ∈ V1 ∪V2. Mapping
matrices M are abstract versions of mapping services, translating from destinations
d ∈ D to (implicit) egress node addresses v ∈ V1 ∪ V2.

The fundamental problem that map/encap systems are attempting to solve is that the
Internet-wide forwarding table F is extremely large; currently, it is necessary for a
router i to maintain an entire row F(i,) to be able to reach all possible destinations
D∪V1∪V2. With a map/encap scheme, a router may instead store a much small routing
table R(i,) to reach nodes V1∪V2. A router may then dynamically construct individual
entries F(i, d) using the mapping service M. Indeed, we might expect the number of
entries within the mapping service to be far greater than the number contained within
the global routing table.

We now consider the case in which a non-distributive routing protocol is used to
construct forwarding tables. In such cases, we show how adopting a map/encap
architecture can allow originating networks to bypass restrictions imposed by non-
distributivity. One particular outcome is that originating networks may select paths
which are globally optimal, instead of just locally optimal. Note that BGP is a non-
distributive protocol [91], and therefore this section is relevant to the current Internet.
We first consider the case in which there is no map/encap architecture, as found in the
current Internet.

Suppose that there is the situation illustrated in Figure 10.2, where there are four
autonomous systems (ASes) on the Internet, each of which is running BGP for inter-AS
connectivity. AS 1 and AS 2 are both customers of AS 3, whilst AS 4 is a peer of AS 3.
We assume that routes from customers are strictly preferred to those from peers, which
are in turn strictly preferred to those from providers. AS 2 and AS 4 both advertise the

147

10. Simple route redistribution

same prefix P. This could occur if P is originated by a multi-homed network attached
to both ASes. AS 3 prefers routes from AS 2 (a customer) over those from AS 4 (a
peer). Now suppose that AS 1 instead prefers routes from AS 4 over those from AS 2.
In the simplest case, this could be because AS 2 artificially pads the AS path attribute
of routes. This inversion of route preferences between AS 3 and AS 1 is a violation of
distributivity.

On the current Internet, this non-distributivity causes AS 1 to chose AS 2’s route to P
because AS 3 never propagates the route from AS 4. The result is that AS 1 chooses a
path to P that is only locally optimal instead of globally optimal; AS 1 chooses the best
path to P amongst all those that is has been given, instead of amongst all possible paths.
From the point of view of the originator of P, this non-distributivity means that it is
very difficult to control incoming traffic; changes in the the policy of the originating
AS are not respected by AS 3. The only way to force AS 1 to use the path via AS 4 is
to specially configure community attributes on P to affect the route decision process at
AS 3.

Now consider the case where the Internet is running BGP with a map/encap archi-
tecture. BGP is used to compute shortest paths between core nodes. The attachment
points of edge nodes are determined using a mapping service e.g. the mapping service
would inform AS 1 that P is originated by routers within both AS 2 and AS 4. AS 1 can
now reach P by tunnelling to an egress point in AS 4, the source of closest originating
locator for P. i.e. AS 1 is no longer constrained by AS 3’s preferences for AS 2 over AS 4.
From the point of view of the originator of P, it is now much easier to use local policy
to control incoming traffic.

In practice, the choice of egress point could be determined by both the routing distance
and also policy expressed within the mapping service itself. Furthermore, the mapping
service policy could be a function of the source locator e.g. the mapping service could
return different responses for routers within AS 1 and AS 3.

148

C 11

Conclusions

In this chapter we summarise the research results presented in this dissertation and
show how they support the thesis (§ 11.1). We then conclude with an outline of areas
future work (§ 11.2).

11.1 Summary

Our thesis from Chapter 1 stated that:

Using the theory of algebraic routing, routing protocols can be specified at
a high-level, automatically checked for correctness and then compiled into
efficient implementations. The resulting protocols are easier to understand
and require significantly less implementation effort.

We now summarise the research presented in this dissertation and evaluate the extent
to which it supports the thesis.

We commenced this dissertation by showing how it is difficult both to understand
and implement existing routing protocols (§ 1). This sets the benchmark for substan-
tiating the statement that our generated protocols are ’easier to understand and require
significantly less implementation effort’. We demonstrated that due to the cost of creating
new routing protocols, network operators are instead ‘making do’ with existing rout-
ing protocols. We also described limitations of the current mechanisms for protocol
interaction. Next we outlined several instances in which current routing protocols
behave in apparently unpredictable manners due to the absence of a clear semantics.
Finally, we described examples of errors that have occurred in current routing protocol
implementations.

We then presented the ‘theory of algebraic routing’ and described how it can be used to
separate routing languages from routing algorithms (§ 2). We also described how the

149

11. Conclusions

algebraic properties of routing languages can be ‘automatically check[ed] for correctness’
to guarantee the safety of generated routing protocols. Finally, we exhibited several
other examples of systems in which domain-specific languages have been applied to
networking problems for the purpose of increasing clarity of specification and aiding
implementation. We showed how the approach of compiling routing languages from
high-level specifications can be viewed as an instance of this approach.

We now discuss the metarouting architecture for compiling routing protocol specifica-
tions. In Chapter 3 we described how the compilation task can be decomposed into a
number of stages. We also showed how current routing protocols can be generalised
to produce online routing algorithms. This in itself dramatically reduces implemen-
tation effort. In Chapter 6, we discussed the specifics of compilation. Our approach
involves instantiating a library of templated C++ code. We showed how this technique
can be viewed as using the C++ template facilities to write a domain-specific embedded
language. The benefits of this approach are that the compiler itself generates minimal
code and that the templated code can be specialised for increased performance.

We have demonstrated two metalanguages that allow routing languages to be ‘specified
at a high level’. In Chapter 5, we demonstrated our first metalanguage, RAML1. This
language has an associated semantics and intermediate language, which is described
in Chapter 4. Compared to BGP, which does not have a formal semantics, this fa-
cility means that routing protocols generated using metarouting are indeed ’easier to
understand’. We then extended the metalanguage in Chapter 7 in order to increase
its expressivity. We motivated this extension using the ‘regions’ and ‘minimal paths’
examples. Both of these examples could be of practical use. They also demonstrate
that protocols can indeed be developed with ’significantly less effort’. Note that whether
all useful routing languages are expressible within our metalanguage is impossible to
answer in the positive; we return to this question in Section 11.2.

We now examine whether our routing protocol specifications are compiled into ’efficient
implementations’. In Chapter 8 we evaluated the performance of three example routing
languages, and demonstrated how to improve their efficiency. We demonstrated how
to systematically exploit sharing, an optimisation technique that is manually performed
in current routing protocols. Using memoisation, we showed that in some instances
it is possible to trade-off memory usage for execution time. We also illustrated an
example of using automatically derived algebraic properties to increase the efficiency
of the generated code. Whilst we lack any alternatives to which we might compare
the efficiency of our generated code, we have certainly demonstrated techniques that
allow us to improve the efficiency of code that our system itself generates.

Turning to Chapter 9, we discussed the differences between routing and forwarding. We
demonstrated how semimodules could be used to model attachment, and demonstrated
the hot-potato and cold-potato forwarding methods. Both of these forwarding methods

150

11. Conclusions

are found in use in inter-domain routing on the Internet. Finally, in Chapter 10 we
described how to extend the attachment model to represent a restricted form of route
redistribution that we term simple route redistribution. This is the first algebraic account
of redistribution, and represents a first step in formally understanding the ‘glue logic’ of
the Internet. Whilst we have not yet incorporated the routing/forwarding or the simple
route redistribution models into the metarouting system, they represent additional
dimensions in which routing protocols might be specified so that they are ‘easier to
understand’.

11.2 Future work

Whilst we have demonstrated the feasibility of the metarouting approach, much re-
search still remains to be done within this area. We now discuss areas in which the
work in this dissertation might be extended.

From a practical point of view, there are several areas of work remaining in order
to produce robust routing protocols that are suitable for operational use. It would
be desirable to support a greater range of online routing algorithms. For example,
we would like to include routing algorithms from the XORP routing platform [22].
Supporting both Quagga and XORP would help demonstrate the generality of our
approach. We would also like to add support for Mobile Ad hoc Networking (MANET)
algorithms, such as that employed by the Ad hoc On-Demand Distance Vector (AODV)
routing protocol [132]. It is also necessary to understand how to permit the flexible
configuration of routing protocols in a distributed environment, whilst still maintaining
safety. For example, we might wish to permit different components of policy to be
specified at each end of routing adjacencies. Some promising initial work into this area
has already been conducted [114].

Another area of research concerns the optimisation of generated code. Whilst we
have shown that general techniques such as sharing can be successfully applied, we
have used relatively few of the rich set of algebraic properties that are automatically
determined at compile time. Other research [121, 122] suggests that these properties
may be used to further optimise minimal sets constructions. A related area concerns
‘tunable’ code generation. Memoisation demonstrates that it is possible to reduce the
execution time of (offline) routing protocols at the expense of greater memory use. We
would like to classify optimisations so that they can be used to target platforms with a
range of resources. For example, the memoisation technique might be more appropriate
for a device with a large amount of memory, whilst the sharing optimisation might be
particularly suited to a system in with little memory. As a further extension, we would
also like to discover to what extent the particular choice of routing algorithm affects
the performance of the routing language.

151

11. Conclusions

Turning to the design of the compiler, it would be desirable to automatically generate
the property-checking rules. These rules are used within the compiler for verifying
the correctness of routing language specifications. Our current approach is to prove
these rules ‘on paper’, and then manually implement the corresponding property-
checking code. The main problem is that it is necessary to track dozens of different
properties and rules, causing the compiler implementation to become substantially
more complex. Automated theorem proving might be used to address this issue. We
envision a situation in property rules are formally specified and checked. Property-
checking code for the compiler could then be automatically extracted from formal
specifications.

There also remain areas of work in the design of the metalanguage. We need to
understand whether our metalanguage is sufficiently expressive; we hope that users
of our system will not be needlessly constrained by the current selection of language
operators. We believe that we can answer this question in part by having network
operators and researchers use our system within a practical context. Knowledge gained
from this experience may well feed back into the design of further extensions for the
metalanguage.

We would like to extend the metarouting system to incorporate the attachment models
from Chapter 9. Part of this work would involve extending the metalanguage to
support the hot-potato and cold-potato semimodules, for example. We would also like
to further modularise online algorithms to support separate mapping services. With
regards to simple route redistribution, it would seem desirable to have the ability to
generate first-class redistribution protocols that operate above the routing layer. We
have also not fully addressed issues such as mutual redistribution or administrative
distance.

What is the future of metarouting? Currently, network operators ‘make do’ with a
small selection of monolithic routing protocols, and network researchers struggle to
implement their ideas. Metarouting has the potential to revolutionise this situation by
allowing the rapid development of new, provably-correct routing protocols.

152

Bibliography

[1] G. Huston. AS6447 BGP Routing Table Analysis Report. http://bgp.potaroo.
net/as6447/, 2009. 1, 1.2.1, 10.3.1

[2] P. Hoffman and S. Harris. RFC 4677: The Tao of IETF: A Novice’s Guide to the
Internet Engineering Task Force, September 2006. 1

[3] Timothy G. Griffin and João Luı́s Sobrinho. Metarouting. SIGCOMM Comput.
Commun. Rev., 35(4):1–12, 2005. 1, 1.6, 7.2

[4] Bernard Carré. Graphs and Networks. Oxford University Press, Oxford, 1979. 1,
2.6.3, 2.6.6, 7.2

[5] M. Gondran and M. Minoux. Graphs, Dioids, and Semirings : New Models and
Algorithms. Springer, 2008. 1, 2.7.3, 7.2

[6] V. Fuller and T. Li. RFC 4632: Classless Inter-domain Routing (CIDR): The
Internet Address Assignment and Aggregation Plan, August 2006. 1.1.1

[7] G. Huston. CIDR Report. http://www.cidr-report.org/as2.0/, 2009. 1.1.2

[8] Y. Rekhter and T. Li. RFC 1771: A Border Gateway Protocol 4 (BGP-4), March
1995. 1.1.2, 1.1.4, 2.1

[9] Y. Rekhter, T. Li, and S. Hares. RFC 4271: A Border Gateway Protocol 4 (BGP-4),
January 2006. 1.1.2, 1.5, 2.7.1, 9.3.4

[10] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959. 1.1.3, 2.1, 2.7.2

[11] J. Moy. RFC 2328: OSPF Version 2, April 1998. 1.1.3, 2.1, 2.7.2, 9.4

[12] D. Oran (Ed.). RFC 1142: OSI IS-IS Intra-domain Routing Protocol, February
1990. 1.1.3, 2.1, 2.7.2

[13] C. Hedrick. RFC 1058: Routing Information Protocol, June 1998. 1.1.3, 2.7.1

153

http://bgp.potaroo.net/as6447/
http://bgp.potaroo.net/as6447/
http://tools.ietf.org/html/rfc4677
http://tools.ietf.org/html/rfc4677
http://tools.ietf.org/html/rfc4677
http://tools.ietf.org/html/rfc4677
http://www.cidr-report.org/as2.0/
http://tools.ietf.org/html/rfc1771
http://tools.ietf.org/html/rfc4271
http://tools.ietf.org/html/rfc2328
http://tools.ietf.org/html/rfc1142
http://tools.ietf.org/html/rfc1058

BIBLIOGRAPHY

[14] Bob Albrightson, J.J. Garcia-Luna-Aceves, and Joanne Boyle. EIGRP – A Fast
Routing Protocol Based On Distance Vectors. In Proc. Networld/Interop 94, 1994.
1.1.3

[15] J. J. Garcia-Luna-Aceves. Loop-free routing using diffusing computations.
IEEE/ACM Trans. Netw., 1(1):130–141, 1993. 1.1.3

[16] Iljitsch van Beijnum. BGP: Building Reliable Networks with the Border Gateway
Protocol. O’Reilly and Associates, Inc., 2002. 1.1.4

[17] Alexander Gurney and Timothy G. Griffin. Lexicographic products in metarout-
ing. In Proc. ICNP 2007, pages 113–122, October 2007. 1.1.4, 1.6, 4.3.2, 4.4.3

[18] G. Huston. Interconnection, Peering, and Settlements. http://www.potaroo.
net/papers/1999-6-peer/peering.pdf, 1999. 1.1.5

[19] Russ White, Danny McPherson, and Srihari Sangli. Practical BGP. Addison-
Wesley, 2005. 1.2.1

[20] Randy Zhang and Micah Bartell. BGP Design and Implementation. Cisco Press,
December 2003. 1.2.1

[21] Nick Feamster, Jay Borkenhagen, and Jennifer Rexford. Guidelines for Interdo-
main Traffic Engineering. SIGCOMM Comput. Commun. Rev., 33(5):19–30, 2003.
1.2.1

[22] Mark Handley, Eddie Kohler, Atanu Ghosh, Orion Hodson, and Pavlin Ra-
doslavov. Designing extensible IP router software. In Proc. NSDI ’05, Boston,
MA, USA, May 2005. 1.2.2, 1.5, 2.3.2, 3.4, 11.2

[23] Lakshminarayanan Subramanian, Matthew Caesar, Cheng Tien Ee, Mark Han-
dley, Morley Mao, Scott Shenker, and Ion Stoica. HLP: a next generation inter-
domain routing protocol. In Proc. SIGCOMM ’05, pages 13–24, New York, NY,
USA, 2005. ACM. 1.2.2

[24] Franck Le, Geoffrey G. Xie, Dan Pei, Jia Wang, and Hui Zhang. Shedding light on
the glue logic of the internet routing architecture. SIGCOMM Comput. Commun.
Rev., 38(4):39–50, 2008. 1.3, 10.1

[25] David A. Maltz, Geoffrey Xie, Jibin Zhan, Hui Zhang, Gı́sli Hjálmtýsson, and
Albert Greenberg. Routing design in operational networks: a look from the
inside. SIGCOMM Comput. Commun. Rev., 34(4):27–40, 2004. 1.3

[26] Geoffrey G. Xie, Jibin Zhan, David A. Maltz, Hui Zhang, Albert Greenberg,
Gisli Hjalmtysson, and Jennifer Rexford. On Static Reachability Analysis of IP
Networks. In Proc. INFOCOM ’05, 2005. 1.3

154

http://www.potaroo.net/papers/1999-6-peer/peering.pdf
http://www.potaroo.net/papers/1999-6-peer/peering.pdf

BIBLIOGRAPHY

[27] Franck Le and Geoffrey G. Xie. On guidelines for safe route redistributions. In
Proc. INM ’07, pages 274–279, New York, NY, USA, 2007. ACM. 1.3, 10.1

[28] Franck Le, Geoffrey G. Xie, and Hui Zhang. Understanding route redistribution.
In Proc. ICNP ’07, pages 81–92. IEEE, October 2007. 1.3, 10.1

[29] Franck Le, Geoffrey G. Xie, and Hui Zhang. Instability Free Routing: Beyond
One Protocol Instance. In Proc CONEXT ’08, pages 1–12, New York, NY, USA,
2008. ACM. 1.3, 10.1

[30] Timothy G. Griffin and Geoff Huston. RFC 4264: BGP Wedgies, November 2005.
1.4.1

[31] Timothy G. Griffin and Gordon Wilfong. Analysis of the MED Oscillation Problem
in BGP. Proc. ICNP ’02, pages 90–99, 2002. 1.4.2, 1.4.2

[32] Cisco. Field Notice: Endless BGP Convergence Problem in Cisco IOS Software Re-
leases. http://www.cisco.com/en/US/ts/fn/100/fn12942.html, October 2000.
1.4.2

[33] Timothy G. Griffin and Gordon Wilfong. An Analysis of BGP Convergence
Properties. In Proc. SIGCOMM ’99, pages 277–288, New York, NY, USA, 1999.
ACM. 1.4.2

[34] Kannan Varadhan, Ramesh Govindan, and Deborah Estrin. Persistent Route
Oscillations in Inter-Domain Routing. Computer Networks, 32(1):1–16, 2000. 1.4.2

[35] D. McPherson, V. Gill, D. Walton, and A. Retana. RFC 3345: Border Gateway
Protocol (BGP) Persistent Route Oscillation Condition, August 2002. 1.4.2

[36] Quagga routing suite. http://www.quagga.net/. 1.5, 1.6, 2.3.1, 3.4

[37] Earl Zmijewski. Longer is not always better. http://www.renesys.com/blog/
2009/02/longer-is-not-better.shtml, February 2009. 1.5

[38] Earl Zmijewski. Reckless Driving on the Internet. http://www.renesys.com/
blog/2009/02/the-flap-heard-around-the-worl.shtml, February 2009. 1.5

[39] Earl Zmijewski. AfNOG Takes Byte Out of Internet. http://www.renesys.com/
blog/2009/05/byte-me.shtml, May 2009. 1.5

[40] OpenBGPD. http://www.openbgpd.org/. 1.5

[41] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. Internet Draft: Locator/ID Sepa-
ration Protocol (LISP), July 2009. 1.6, 10.3.3

155

http://tools.ietf.org/html/rfc4264
http://www.cisco.com/en/US/ts/fn/100/fn12942.html
http://tools.ietf.org/html/rfc3345
http://tools.ietf.org/html/rfc3345
http://www.quagga.net/
http://www.renesys.com/blog/2009/02/longer-is-not-better.shtml
http://www.renesys.com/blog/2009/02/longer-is-not-better.shtml
http://www.renesys.com/blog/2009/02/the-flap-heard-around-the-worl.shtml
http://www.renesys.com/blog/2009/02/the-flap-heard-around-the-worl.shtml
http://www.renesys.com/blog/2009/05/byte-me.shtml
http://www.renesys.com/blog/2009/05/byte-me.shtml
http://www.openbgpd.org/
http://tools.ietf.org/id/draft-ietf-farinacci:2009-03.txt
http://tools.ietf.org/id/draft-ietf-farinacci:2009-03.txt

BIBLIOGRAPHY

[42] Barry M. Leiner, Vinton G. Cerf, David D. Clark, Robert E. Kahn, Leonard Klein-
rock, Daniel C. Lynch, Jon Postel, Larry G. Roberts, and Stephen Wolff. A brief
history of the internet. http://www.isoc.org/internet/history/brief.shtml,
December 2003. 2.1

[43] J. C. R. Licklider. Memorandum For Members and Affiliates of the Intergalac-
tic Computer Network. http://www.kurzweilai.net/articles/art0366.html,
April 1963. 2.1

[44] Leonard Kleinrock. Information Flow in Large Communication Nets, Proposal
for a Ph.D. Thesis. http://www.cs.ucla.edu/˜lk/LK/Bib/REPORT/PhD/, May
1961. 2.1

[45] John McQuillan and David Walden. The ARPA Network Design Decisions.
Computer Networks, 1(5):243–289, August 1977. 2.1

[46] Vinton G. Cerf and Robert E. Kahn. A Protocol for Packet Network Intercommu-
nication. IEEE/ACM Trans. Comm., 22(5), May 1974. 2.1

[47] Vinton G. Cerf, Yogen Dalal, and Carl Sunshine. RFC 675: Specification of Internet
Transmission Control Program, December 1974. 2.1

[48] Jon Postel (Ed.). RFC 760: Internet Protocol, January 1980. 2.1

[49] Jon Postel (Ed.). RFC 793: Transmission Control Protocol, September 1981. 2.1

[50] John M. McQuillan, Ira Richer, and Eric C. Rosen. The New Routing Algorithm
for the ARPANET. IEEE Transactions on Communications, 28(5), May 1980. 2.1

[51] J. Postel. RFC 801: NCP/TCP transition plan, November 1981. 2.1

[52] Robert Hinden and Alan Sheltzer. RFC 823: The DARPA Internet Gateway,
September 1982. 2.1

[53] R. Braden and J. Postel. RFC 1009: Requirements for Internet Gateways, June
1987. 2.1

[54] Eric C. Rosen. RFC 827: Exterior Gateway Protocol (EGP), October 1982. 2.1

[55] Shivkumar Kalyanaraman. Exterior Gateway Protocols: EGP, BGP-4,
CIDR. http://www.ecse.rpi.edu/Homepages/shivkuma/teaching/sp2000/

i12_egp/index.htm, 2000. 2.1

[56] L. Landweber, M. Litzkow, D. Neuhengen, and M. Soloman. Architecture of the
CSNET name server. In Proc. COMM ’83, pages 146–153. ACM, 1983. 2.1

156

http://www.isoc.org/internet/history/brief.shtml
http://www.kurzweilai.net/articles/art0366.html
http://www.cs.ucla.edu/~lk/LK/Bib/REPORT/PhD/
http://tools.ietf.org/html/rfc675
http://tools.ietf.org/html/rfc675
http://tools.ietf.org/html/rfc760
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc801
http://tools.ietf.org/html/rfc823
http://tools.ietf.org/html/rfc1009
http://tools.ietf.org/html/rfc827
http://www.ecse.rpi.edu/Homepages/shivkuma/teaching/sp2000/i12_egp/index.htm
http://www.ecse.rpi.edu/Homepages/shivkuma/teaching/sp2000/i12_egp/index.htm

BIBLIOGRAPHY

[57] J. Rekhter. RFC 1092: EGP and Policy Based Routing in the New NSFNET
Backbone, Februrary 1989. 2.1

[58] H. W. Braun. RFC 1093: The NSFNET Routing Architecture, February 1989. 2.1

[59] K. Lougheed and Y. Rekhter. RFC 1105: A Border Gateway Protocol (BGP), June
1989. 2.1

[60] K. Lougheed and Y. Rekhter. RFC 1163: Border Gateway Protocol (BGP), June
1990. 2.1

[61] A Brief History of NSF and the Internet. http://www.nsf.gov/news/news_summ.
jsp?cntn_id=103050, 2003. 2.1

[62] A. van Deursen, P. Klint, and J. Visser. Domain-Specific Languages: An Anno-
tated Bibliography. ACM SIGPLAN Notices, 35(6):26–36, June 2000. 2.2.1

[63] Simon Peyton Jones, Jean-Marc Eber, and Julian Seward. Composing contracts:
an adventure in financial engineering – Functional Pearl. In Proc. ICFP ’00,
Montreal, Canada, September 2000. 2.2.1

[64] Stephen C. Johnson. Yacc: Yet Another Compiler-Compiler. http://dinosaur.
compilertools.net/yacc/, 1975. 2.2.1, 6.2.1

[65] Stuart I. Feldman. Make – A Program for Maintaining Computer Programs.
Softw., Pract. Exper., 9(4):255–265, 1979. 2.2.1

[66] Leslie Lamport. LaTeX: A Document Preparation System. Addison-Wesley Profes-
sional, second edition, 1994. 2.2.1

[67] Paul Hudak. Building Domain-Specific Embedded Languages. ACM Computing
Surveys, 28, 1996. 2.2.1

[68] Peter J. McCann and Satish Chandra. Packet types: abstract specification of
network protocol messages. SIGCOMM Comput. Commun. Rev., 30(4):321–333,
2000. 2.2.3

[69] Ruoming Pang, Vern Paxson, Robin Sommer, and Larry Peterson. BinPAC: a
YACC for writing application protocol parsers. In Proc. IMC ’06, pages 289–300,
New York, NY, USA, 2006. ACM. 2.2.3

[70] Godmar Back. DataScript – A Specification and Scripting Language for Binary
Data. Lecture Notes in Computer Science, 2487/2002:66–77, 2002. 2.2.3

[71] Kathleen Fisher and Robert Gruber. PADS: A domain-specific language for pro-
cessing ad hoc data. In Proc. PLDI ’05, June 2005. 2.2.3

157

http://tools.ietf.org/html/rfc1092
http://tools.ietf.org/html/rfc1092
http://tools.ietf.org/html/rfc1093
http://tools.ietf.org/html/rfc1105
http://tools.ietf.org/html/rfc1105
http://www.nsf.gov/news/news_summ.jsp?cntn_id=103050
http://www.nsf.gov/news/news_summ.jsp?cntn_id=103050
http://dinosaur.compilertools.net/yacc/
http://dinosaur.compilertools.net/yacc/

BIBLIOGRAPHY

[72] Intel Corporation. Intel IXP2400 Network Processor: Flexible, High-Performance
Solution for Access and Edge Applications. http://download.intel.com/

design/network/papers/ixp2400.pdf, 2002. 2.2.4

[73] Robert Ennals, Richard Sharp, and Alan Mycroft. Linear Types for Packet Pro-
cessing. In ESOP ’04: Proceedings of the 13th European Symposium on Programming,
pages 204–218. Springer, 2004. 2.2.4

[74] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M.
Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion
Stoica. Declarative Networking: Language, Execution and Optimization. In
Proc. SIGMOD ’06, June 2006. 2.2.5

[75] James Kelly, Wladimir Araujo, and Kallol Banerjee. Rapid Service Creation using
the JUNOS SDK. In Proc. PRESTO ’09. ACM, August 2009. 2.3.3

[76] Extreme Networks. ExtremeXOS Operating System, Version 12.3. www.

extremenetworks.com/libraries/products/DSExtXOS_1030.pdf, 2009. 2.3.3

[77] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.
The Click modular router. ACM Transactions on Computer Systems, 18(3):263–297,
August 2000. 2.4.1

[78] John W. Lockwood, Nick McKeown, Greg Watson, Glen Gibb, Paul Hartke, Jad
Naous, Ramanan Raghuraman, and Jianying Luo. NetFPGA – An Open Platform
for Gigabit-rate Network Switching and Routing. In Proc. MSE ’07, June 2007.
2.4.2

[79] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: En-
abling Innovation in Campus Networks. http://www.openflowswitch.org/
/documents/openflow-wp-latest.pdf, March 2008. 2.4.3

[80] Mark Hayden. The Ensemble System. PhD thesis, Cornell University, 1998. 2.5.1

[81] Xiaoming Liu, Christoph Kreitz, Robbert van Renesse, Jason Hickey, Mark Hay-
den, Ken Birman, and Robert L. Constable. Building Reliable, High-Performance
Systems from Components. Operating Systems Review, 34(5):80–92, 1999. 2.5.1

[82] Edoardo S. Biagioni. A Structured TCP in Standard ML. Technical report,
Carnegie Mellon University, Pittsburgh, PA, USA, 1994. 2.5.2

[83] Edoardo Biagioni, Robert Harper, and Peter Lee. A network protocol stack in
Standard ML. Higher-order and symbolic computation, 14(4):309–356, December
2001. 2.5.2

158

http://download.intel.com/design/network/papers/ixp2400.pdf
http://download.intel.com/design/network/papers/ixp2400.pdf
www.extremenetworks.com/libraries/products/DSExtXOS_1030.pdf
www.extremenetworks.com/libraries/products/DSExtXOS_1030.pdf
http://www.openflowswitch.org//documents/openflow-wp-latest.pdf
http://www.openflowswitch.org//documents/openflow-wp-latest.pdf

BIBLIOGRAPHY

[84] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML. The MIT Press, second edition, May 1997. 2.5.2

[85] Eddie Kohler, M. Frans Kaashoek, and David R. Montgomery. A Readable TCP
in the Prolac Protocol Language. In Proc. SIGCOMM ’99, pages 3–13, Cambridge,
Massachusetts, USA, August 1999. 2.5.3

[86] Anil Madhavapeddy, Alex Ho, Tim Deegan, David Scott, and Ripduman Sohan.
Melange: creating a ‘functional’ internet. In Proc. EuroSys ’07, pages 101–114,
New York, NY, USA, 2007. ACM. 2.5.4

[87] R. C. Backhouse and B. A. Carré. Regular Algebra Applied to Path-finding
Problems. J. Inst. Math. Appl., 15(2), 1975. 2.6.3

[88] M. Gondran and M. Minoux. Graphs and Algorithms. John Wiley and Sons, 1984.
2.6.3, 7.2

[89] John M. Howie. Fundamentals of Semigroup Theory. Oxford University Press, USA,
February 1996. 2.6.3

[90] João Luı́s Sobrinho. Network routing with path vector protocols: theory and
applications. In Proc. SIGCOMM ’03, pages 49–60, New York, NY, USA, 2003.
ACM. 2.6.7

[91] Timothy G. Griffin and Alexander J. T. Gurney. Increasing Bisemigroups and Alge-
braic Routing, volume 4988/2008. Springer Berlin / Heidelberg, 2008. 2.6.7, 7.2,
7.4, 9.5, 10.3.4

[92] Richard Bellman. On a Routing Problem. Quarterly of Applied Mathematics, 16(1),
1958. 2.7.1

[93] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, second edition, 2001. 2.7.1, 2.7.2

[94] H. N. Gabow. Scaling algorithms for network problems. Journal of Computer and
System Sciences, 31:148–168, 1985. 2.7.2

[95] Mikkel Thorup. Undirected Single-Source Shortest Paths with Positive Integer
Weights in Linear Time. J. ACM, 46(3):362–394, 1999. 2.7.2

[96] Simon Peyton Jones. Haskell 98 Language and Libraries: the Revised Report. Cam-
bridge University Press, 2003. 4.2.2

[97] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouil-
lon. The Objective Caml system release 3.11. http://caml.inria.fr/pub/docs/
manual-ocaml/index.html, November 2008. 4.5.1

159

http://caml.inria.fr/pub/docs/manual-ocaml/index.html
http://caml.inria.fr/pub/docs/manual-ocaml/index.html

BIBLIOGRAPHY

[98] Glynn Winskel. The Formal Semantics of Programming Languages: An Introduction.
The MIT Press, February 1993. 4.5.3

[99] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, February
2002. 4.5.3, 5.2

[100] Todd L. Veldhuizen. Expression templates. C++ Report, 7(5):26–31, June 1995.
6.1.1

[101] Todd L. Veldhuizen. C++ Templates as Partial Evaluation. In Proc. ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-Based Program Manipulation ’99, Tech.
Report NS-99-1, pages 13–18. BRICS, 1999. 6.1.1

[102] Eigen C++ template library for linear algebra. http://eigen.tuxfamily.org.
6.1.1

[103] Blitz++. http://www.oonumerics.org/blitz/. 6.1.1

[104] Peter Gottschling, David S. Wise, and Michael D. Adams. Representation-
transparent matrix algorithms with scalable performance. In ICS ’07: Proceedings
of the 21st annual international conference on Supercomputing, pages 116–125, New
York, NY, USA, 2007. ACM. 6.1.1

[105] GNU Multiple Precision Arithmetic Library. http://gmplib.org/. 6.2.1

[106] Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design
Patterns Applied. Addison-Wesley Professional, February 2001. 6.2.3

[107] T. Lengauer and D. Theune. Efficient algorithms for path problems with gen-
eral cost criteria. In Proceedings of the 18th international colloquium on Automata,
languages and programming, pages 314–326, New York, NY, USA, 1991. Springer-
Verlag New York, Inc. 7.2

[108] T. Lengauer and D. Theune. Unstructured path problems and the making of
semirings. Lecture Notes in Computer Science, 519/1991, 1991. 7.2

[109] L. Fuchs. Partially Ordered Algebraic Systems. Pergamon Press, 1963. 7.2

[110] G. Birkhoff. Lattice Theory. American Mathematical Society, second edition, 1967.
7.2

[111] R. E. Johnson. Free products of ordered semigroups. Proceedings of the American
Mathematical Society, 19(3):697–700, 1968. 7.2

[112] João Luı́s Sobrinho. Algebra and algorithms for QoS path computation and
hop-by-hop routing in the internet. IEEE/ACM Trans. Netw., 10(4):541–550, 2002.
7.2

160

http://eigen.tuxfamily.org
http://www.oonumerics.org/blitz/
http://gmplib.org/

BIBLIOGRAPHY

[113] João Luı́s Sobrinho. An algebraic theory of dynamic network routing. IEEE/ACM
Trans. Netw., 13(5):1160–1173, 2005. 7.2

[114] Philip J. Taylor and Timothy G. Griffin. A model of configuration languages for
routing protocols. In Proc. PRESTO ’09, 2009. 7.2.2, 11.2

[115] E. Minieka and D. R. Shier. A Note on an Algebra for the k Best Routes in a
Network. J. Inst. Maths Applics, 11:145–149, August 1972. 7.2.3

[116] Jean-Christophe Filliâtre and Sylvain Conchon. Type-Safe Modular Hash-
Consing. In Proc. ACM SIGPLAN Workshop on ML ’06, Portland, Oregon, Septem-
ber 2006. 8.1.1, 8.1.3

[117] John Allen. Anatomy of LISP. McGraw-Hill, 1978. 8.1.1

[118] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley Professional,
November 1994. 8.1.1

[119] Donald R. Morrison. PATRICIA – Practical Algorithm To Retrieve Information
Coded in Alphanumeric. Journal of the ACM, 15(4):514–534, October 1968. 8.1.3

[120] Chris Okasaki and Andrew Gill. Fast Mergeable Integer Maps. In Proc. ACM
SIGPLAN Workshop on ML ’98, pages 77–86, Baltimore, Maryland, USA, 1998. 8.2,
8.1.3

[121] Alberto Martelli. An Application of Regular Algebra to the Enumeration of Cut
Sets in a Graph. In IFIP Congress, pages 511–515, 1974. 8.2.1, 8.4.1, 11.2

[122] Alberto Martelli. A Gaussian Elimination Algorithm for the Enumeration of Cut
Sets in a Graph. J. ACM, 23(1):58–73, 1976. 8.2.1, 8.4.1, 11.2

[123] Béla Bollobás. Random Graphs. Cambridge University Press, second edition,
January 2001. 8.2.3

[124] John N. Billings and Timothy G. Griffin. A model of Internet routing using semi-
modules. In Relations and Kleene Algebra in Computer Science. Springer Berlin /

Heidelberg, November 2009. 9

[125] John T. Moy. OSPF: Anatomy of an Internet Routing Protocol. Addison-Wesley,
1998. 9.4

[126] D. Meyer, L. Zhang, and K. Fall. RFC 4984: Report from the IAB Workshop on
Routing and Addressing, September 2007. 10.3.1

[127] Geoff Huston. RFC 4177: Architectural Approaches to Multi-homing for IPv6,
September 2005. 10.3.2

161

http://tools.ietf.org/html/rfc4984
http://tools.ietf.org/html/rfc4984
http://tools.ietf.org/html/rfc4177

BIBLIOGRAPHY

[128] E. Nordmark and M. Bagnulo. RFC 5533: Shim6: Level 3 Multihoming Shim
Protocol for IPv6, June 2009. 10.3.2

[129] Randall Atkinson, Saleem Bhatti, and Stephen Hailes. ILNP: mobility, multi-
homing, localised addressing and security through naming. Telecommunication
Systems, 42(3–4):273–291, December 2009. 10.3.2

[130] Mike O’Dell. Internet Draft: GSE - An Alternate Addressing Architecture for
IPv6 , February 1997. 10.3.2

[131] B. Quoitin, L. Iannone, C. de Launois, and O. Bonaventure. Evaluating the
Benefits of the Locator/Identifier Separation. In Proc. MobiArch ’07, August 2007.
10.3.3

[132] C. Perkins, E. Belding-Royer, and S. Das. RFC 3561: Ad hoc On-Demand Distance
Vector (AODV) Routing, July 2003. 11.2

162

http://tools.ietf.org/html/rfc5533
http://tools.ietf.org/html/rfc5533
http://tools.ietf.org/id/draft-ietf-ipngwg-gseaddr-00
http://tools.ietf.org/id/draft-ietf-ipngwg-gseaddr-00
http://tools.ietf.org/html/rfc3561
http://tools.ietf.org/html/rfc3561

	1 Introduction
	1.1 Internet routing
	1.2 The case for new routing protocols
	1.3 The case for new glue logic
	1.4 Designing routing protocols is difficult
	1.5 Implementing routing protocols is difficult
	1.6 Contributions

	2 Background and related work
	2.1 A brief history of the Internet
	2.2 Domain-specific languages for networking
	2.3 Extending the control plane
	2.4 Extending the data plane
	2.5 Modularising network protocols
	2.6 Algebraic routing
	2.7 Algorithms

	3 System architecture
	3.1 Design overview
	3.2 Routing interfaces
	3.3 Compilation
	3.4 Routing algorithms
	3.5 User interfaces

	4 Semantic domain
	4.1 Overview
	4.2 Basic definitions
	4.3 Semigroups
	4.4 Bisemigroups
	4.5 Intermediate language

	5 RAML1: Mini metalanguage
	5.1 Example
	5.2 Metalanguage
	5.3 Translation into IRL1

	6 Compilation
	6.1 Overview
	6.2 Compilation

	7 RAML2: Extended metalanguage
	7.1 Examples
	7.2 Semantic domain
	7.3 Metalanguage

	8 Performance
	8.1 Optimisations
	8.2 Methodology
	8.3 Results
	8.4 Discussion

	9 Deriving forwarding paths from routing solutions
	9.1 Introduction
	9.2 Attaching destinations
	9.3 Generalised attachment
	9.4 Modelling OSPF
	9.5 The non-distributive case

	10 Simple route redistribution
	10.1 Introduction
	10.2 Simple route redistribution
	10.3 Relation to routing scalability problem

	11 Conclusions
	11.1 Summary
	11.2 Future work

