
An architecture for metarouting

John N. Billings, Philip J. Taylor, Timothy G. Griffin

University of Cambridge

RiNG Workshop, Madrid, December 2007

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 1 / 20



Metarouting

Define a metalanguage in which we can write new routing protocols

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 2 / 20



Metarouting

Define a metalanguage in which we can write new routing protocols

Mechanise the ‘boiler-plate’ for routing protocols e.g. wire formats,
data-structures, policy application, metric comparisons

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 2 / 20



Metarouting

Define a metalanguage in which we can write new routing protocols

Mechanise the ‘boiler-plate’ for routing protocols e.g. wire formats,
data-structures, policy application, metric comparisons

Automatically check correctness conditions

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 2 / 20



Metarouting

Define a metalanguage in which we can write new routing protocols

Mechanise the ‘boiler-plate’ for routing protocols e.g. wire formats,
data-structures, policy application, metric comparisons

Automatically check correctness conditions

Compile to efficient code

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 2 / 20



Metarouting

Define a metalanguage in which we can write new routing protocols

Mechanise the ‘boiler-plate’ for routing protocols e.g. wire formats,
data-structures, policy application, metric comparisons

Automatically check correctness conditions

Compile to efficient code

BGP in a few pages?

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 2 / 20



Metarouting

Define a metalanguage in which we can write new routing protocols

Mechanise the ‘boiler-plate’ for routing protocols e.g. wire formats,
data-structures, policy application, metric comparisons

Automatically check correctness conditions

Compile to efficient code

BGP in a few pages?

Create a tool for network researchers / operators

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 2 / 20



Metarouting

Define a metalanguage in which we can write new routing protocols

Mechanise the ‘boiler-plate’ for routing protocols e.g. wire formats,
data-structures, policy application, metric comparisons

Automatically check correctness conditions

Compile to efficient code

BGP in a few pages?

Create a tool for network researchers / operators

Long-term project, just getting started

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 2 / 20



Metarouting

Define a metalanguage in which we can write new routing protocols

Mechanise the ‘boiler-plate’ for routing protocols e.g. wire formats,
data-structures, policy application, metric comparisons

Automatically check correctness conditions

Compile to efficient code

BGP in a few pages?

Create a tool for network researchers / operators

Long-term project, just getting started

First ever demonstration of working code

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 2 / 20



System overview

RAML Compile

IL
Code

Generatione.g. Quagga

Libraries

Link

User-oriented
metalanguage

Translate Annotate aRAML

IL

Application

Optimize

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 3 / 20



Example RAML specification

preorder-semigroup dist_bw =
lex_product <dist : positive_integer_lte_plus,

bw : positive_integer_gte_min>

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 4 / 20



Example RAML specification

preorder-semigroup dist_bw =
lex_product <dist : positive_integer_lte_plus,

bw : positive_integer_gte_min>

Defines order and policy application function over metrics

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 4 / 20



Example RAML specification

preorder-semigroup dist_bw =
lex_product <dist : positive_integer_lte_plus,

bw : positive_integer_gte_min>

Defines order and policy application function over metrics

Metrics: <dist=d, bw=b>

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 4 / 20



Example RAML specification

preorder-semigroup dist_bw =
lex_product <dist : positive_integer_lte_plus,

bw : positive_integer_gte_min>

Defines order and policy application function over metrics

Metrics: <dist=d, bw=b>
Order: compare distances (smaller is better), tie-break on bandwidth
(larger is better)

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 4 / 20



Example RAML specification

preorder-semigroup dist_bw =
lex_product <dist : positive_integer_lte_plus,

bw : positive_integer_gte_min>

Defines order and policy application function over metrics

Metrics: <dist=d, bw=b>
Order: compare distances (smaller is better), tie-break on bandwidth
(larger is better)

� <dist=10, bw=50> prefered to <dist=20, bw=100>

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 4 / 20



Example RAML specification

preorder-semigroup dist_bw =
lex_product <dist : positive_integer_lte_plus,

bw : positive_integer_gte_min>

Defines order and policy application function over metrics

Metrics: <dist=d, bw=b>
Order: compare distances (smaller is better), tie-break on bandwidth
(larger is better)

� <dist=10, bw=50> prefered to <dist=20, bw=100>
� <dist=10, bw=50> prefered to <dist=10, bw=40>

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 4 / 20



Example RAML specification

preorder-semigroup dist_bw =
lex_product <dist : positive_integer_lte_plus,

bw : positive_integer_gte_min>

Defines order and policy application function over metrics

Metrics: <dist=d, bw=b>
Order: compare distances (smaller is better), tie-break on bandwidth
(larger is better)

� <dist=10, bw=50> prefered to <dist=20, bw=100>
� <dist=10, bw=50> prefered to <dist=10, bw=40>

Policy application: add distance, minimise bandwidth

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 4 / 20



Example RAML specification

preorder-semigroup dist_bw =
lex_product <dist : positive_integer_lte_plus,

bw : positive_integer_gte_min>

Defines order and policy application function over metrics

Metrics: <dist=d, bw=b>
Order: compare distances (smaller is better), tie-break on bandwidth
(larger is better)

� <dist=10, bw=50> prefered to <dist=20, bw=100>
� <dist=10, bw=50> prefered to <dist=10, bw=40>

Policy application: add distance, minimise bandwidth
� <dist=1, bw=60> . <dist=10, bw=50>

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 4 / 20



Example RAML specification

preorder-semigroup dist_bw =
lex_product <dist : positive_integer_lte_plus,

bw : positive_integer_gte_min>

Defines order and policy application function over metrics

Metrics: <dist=d, bw=b>
Order: compare distances (smaller is better), tie-break on bandwidth
(larger is better)

� <dist=10, bw=50> prefered to <dist=20, bw=100>
� <dist=10, bw=50> prefered to <dist=10, bw=40>

Policy application: add distance, minimise bandwidth
� <dist=1, bw=60> . <dist=10, bw=50>
� ⇒ <dist=11, bw=50>

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 4 / 20



Example RAML specification

preorder-semigroup dist_bw =
lex_product <dist : positive_integer_lte_plus,

bw : positive_integer_gte_min>

Defines order and policy application function over metrics

Metrics: <dist=d, bw=b>
Order: compare distances (smaller is better), tie-break on bandwidth
(larger is better)

� <dist=10, bw=50> prefered to <dist=20, bw=100>
� <dist=10, bw=50> prefered to <dist=10, bw=40>

Policy application: add distance, minimise bandwidth
� <dist=1, bw=60> . <dist=10, bw=50>
� ⇒ <dist=11, bw=50>

Automatically infer monotonicity

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 4 / 20



Example RAML specification

preorder-semigroup dist_bw =
lex_product <dist : positive_integer_lte_plus,

bw : positive_integer_gte_min>

Defines order and policy application function over metrics

Metrics: <dist=d, bw=b>
Order: compare distances (smaller is better), tie-break on bandwidth
(larger is better)

� <dist=10, bw=50> prefered to <dist=20, bw=100>
� <dist=10, bw=50> prefered to <dist=10, bw=40>

Policy application: add distance, minimise bandwidth
� <dist=1, bw=60> . <dist=10, bw=50>
� ⇒ <dist=11, bw=50>

Automatically infer monotonicity

Use with generalised Dijkstra (e.g. OSPF, IS-IS) or vectoring
mechanism (e.g. RIP, BGP)

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 4 / 20



Example RAML specification (2)

preorder-semigroup bw_dist =
lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus>

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 5 / 20



Example RAML specification (2)

preorder-semigroup bw_dist =
lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus>

Order: compare bandwidth, tie-break on distance

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 5 / 20



Example RAML specification (2)

preorder-semigroup bw_dist =
lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus>

Order: compare bandwidth, tie-break on distance

Policy application as before

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 5 / 20



Example RAML specification (2)

preorder-semigroup bw_dist =
lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus>

Order: compare bandwidth, tie-break on distance

Policy application as before

Increasing (not monotonic).

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 5 / 20



Example RAML specification (2)

preorder-semigroup bw_dist =
lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus>

Order: compare bandwidth, tie-break on distance

Policy application as before

Increasing (not monotonic).

Can only use with vectoring (e.g. RIP, BGP). [Sobrinho03]

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 5 / 20



Example RAML specification (2)

preorder-semigroup bw_dist =
lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus>

Order: compare bandwidth, tie-break on distance

Policy application as before

Increasing (not monotonic).

Can only use with vectoring (e.g. RIP, BGP). [Sobrinho03]

Can count to infinity

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 5 / 20



Example RAML specification (2)

preorder-semigroup bw_dist =
lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus>

Order: compare bandwidth, tie-break on distance

Policy application as before

Increasing (not monotonic).

Can only use with vectoring (e.g. RIP, BGP). [Sobrinho03]

Can count to infinity

Will demonstrate later!

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 5 / 20



Example RAML specification (3)

preorder-semigroup bw_dist_path =
lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus,
path : router_path>

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 6 / 20



Example RAML specification (3)

preorder-semigroup bw_dist_path =
lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus,
path : router_path>

Order: as before, but additionally tie-break on path length

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 6 / 20



Example RAML specification (3)

preorder-semigroup bw_dist_path =
lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus,
path : router_path>

Order: as before, but additionally tie-break on path length

Policy application: as before, but add on new path element

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 6 / 20



Example RAML specification (3)

preorder-semigroup bw_dist_path =
lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus,
path : router_path>

Order: as before, but additionally tie-break on path length

Policy application: as before, but add on new path element

Additional constraint: no duplicate path elements (cf. BGP)

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 6 / 20



Example RAML specification (3)

preorder-semigroup bw_dist_path =
lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus,
path : router_path>

Order: as before, but additionally tie-break on path length

Policy application: as before, but add on new path element

Additional constraint: no duplicate path elements (cf. BGP)

No counting to infinity

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 6 / 20



Example RAML specification (3)

preorder-semigroup bw_dist_path =
lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus,
path : router_path>

Order: as before, but additionally tie-break on path length

Policy application: as before, but add on new path element

Additional constraint: no duplicate path elements (cf. BGP)

No counting to infinity

Lots of other possible specifications. . .

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 6 / 20



Example of generated code
static int mrc_int_cmp(mrc_int_t x, mrc_int_t y) {

return y - x;

}

static int mrc_string_cmp(mrc_string_t x, mrc_string_t y) {

int res;

if (x == y)

res = 0;

else /* Lexicographic ordering */

res = strcmp(x->value, y->value);

return res;

}

static int mrc_list_cmp(mrc_slist_t x, mrc_slist_t y) {

int res;

if (x == y) /* Physical equality */

res = 0;

else {

for(; x && y; x = x->next, y = y->next)

if ((res = mrc_string_cmp(x->value, y->value))) /* Elements non-equal */

goto end;

if (x == NULL) {

if (y == NULL) /* Structural equality */

res = 0;

else /* x is prefix of y */

res = -1;

}

else /* y is prefix of x */

res = 1;

}

end: return res;

}

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 7 / 20



Generalised routing algorithms

Take existing routing protocol e.g. RIP, BGP, OSPF, IS-IS

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 8 / 20

Open research topic!



Generalised routing algorithms

Take existing routing protocol e.g. RIP, BGP, OSPF, IS-IS

Abstract metric-specific operations behind API

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 8 / 20

Open research topic!



Generalised routing algorithms

Take existing routing protocol e.g. RIP, BGP, OSPF, IS-IS

Abstract metric-specific operations behind API

e.g. comparisons, policy application, printing, marshaling, ...

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 8 / 20

Open research topic!



Generalised routing algorithms

Take existing routing protocol e.g. RIP, BGP, OSPF, IS-IS

Abstract metric-specific operations behind API

e.g. comparisons, policy application, printing, marshaling, ...

Currently: generalised Quagga RIP implementation

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 8 / 20

Open research topic!



Generalised routing algorithms

Take existing routing protocol e.g. RIP, BGP, OSPF, IS-IS

Abstract metric-specific operations behind API

e.g. comparisons, policy application, printing, marshaling, ...

Currently: generalised Quagga RIP implementation

Result: generalised soft-state, distance vector protocol.

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 8 / 20

Open research topic!



API for generalised RIP

metric_t metric_parse(const char*);
size_t metric_print(char*, size_t, metric_t);

metric_t metric_copy(metric_t);
void metric_free(metric_t);

size_t metric_marshal(void*, size_t, metric_t);
metric_t metric_unmarshal(const void*, size_t);

metric_t metric_infinity(void);
metric_t policy_apply(policy_t, metric_t);

int metric_is_better(metric_t, metric_t);
int metric_is_infinity(metric_t);
int metric_is_equal(metric_t, metric_t);

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 9 / 20



Efficient code for metrics

3 areas: time, memory, bandwidth

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 10 / 20

Open research topic!



Efficient code for metrics

3 areas: time, memory, bandwidth

‘Reasonable’ data-structures e.g. red-black trees for sets

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 10 / 20

Open research topic!



Efficient code for metrics

3 areas: time, memory, bandwidth

‘Reasonable’ data-structures e.g. red-black trees for sets

Only store metrics on heap if they don’t fit within a word

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 10 / 20

Open research topic!



Efficient code for metrics

3 areas: time, memory, bandwidth

‘Reasonable’ data-structures e.g. red-black trees for sets

Only store metrics on heap if they don’t fit within a word

Maximise sharing

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 10 / 20

Open research topic!



Efficient code for metrics

3 areas: time, memory, bandwidth

‘Reasonable’ data-structures e.g. red-black trees for sets

Only store metrics on heap if they don’t fit within a word

Maximise sharing
� Decreased memory usage

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 10 / 20

Open research topic!



Efficient code for metrics

3 areas: time, memory, bandwidth

‘Reasonable’ data-structures e.g. red-black trees for sets

Only store metrics on heap if they don’t fit within a word

Maximise sharing
� Decreased memory usage
� Fast comparsions using pointer equality checks

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 10 / 20

Open research topic!



Efficient code for metrics

3 areas: time, memory, bandwidth

‘Reasonable’ data-structures e.g. red-black trees for sets

Only store metrics on heap if they don’t fit within a word

Maximise sharing
� Decreased memory usage
� Fast comparsions using pointer equality checks
� Side-effect: immutable metrics

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 10 / 20

Open research topic!



Efficient code for metrics

3 areas: time, memory, bandwidth

‘Reasonable’ data-structures e.g. red-black trees for sets

Only store metrics on heap if they don’t fit within a word

Maximise sharing
� Decreased memory usage
� Fast comparsions using pointer equality checks
� Side-effect: immutable metrics

Clean code that can be optimised by the C compiler

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 10 / 20

Open research topic!



Efficient code for metrics

3 areas: time, memory, bandwidth

‘Reasonable’ data-structures e.g. red-black trees for sets

Only store metrics on heap if they don’t fit within a word

Maximise sharing
� Decreased memory usage
� Fast comparsions using pointer equality checks
� Side-effect: immutable metrics

Clean code that can be optimised by the C compiler

Goal: tunable tradeoff between time and memory

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 10 / 20

Open research topic!



Performance: memory

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100 120

M
em

or
y

/
K

B

Time / seconds

ripd
gripd int

gripd bw-dist-path

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 11 / 20



Performance: CPU

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120

C
P
U

u
sa

ge
(%

)

Time / seconds

ripd
gripd int

gripd bw-dist-path

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 12 / 20



Simulation

Use QEMU to emulate multiple routers on single machine

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 13 / 20



Simulation

Use QEMU to emulate multiple routers on single machine

Run real OS and routing code

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 13 / 20



Simulation

Use QEMU to emulate multiple routers on single machine

Run real OS and routing code

Communicate over virtual networks

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 13 / 20



Simulation

Use QEMU to emulate multiple routers on single machine

Run real OS and routing code

Communicate over virtual networks

Pros:

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 13 / 20



Simulation

Use QEMU to emulate multiple routers on single machine

Run real OS and routing code

Communicate over virtual networks

Pros:
� Test generated protocols (almost) ‘for real’

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 13 / 20



Simulation

Use QEMU to emulate multiple routers on single machine

Run real OS and routing code

Communicate over virtual networks

Pros:
� Test generated protocols (almost) ‘for real’
� Behaviour should be identical to corresponding physical network

(modulo timing)

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 13 / 20



Simulation

Use QEMU to emulate multiple routers on single machine

Run real OS and routing code

Communicate over virtual networks

Pros:
� Test generated protocols (almost) ‘for real’
� Behaviour should be identical to corresponding physical network

(modulo timing)
� Easy to configure

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 13 / 20



Simulation

Use QEMU to emulate multiple routers on single machine

Run real OS and routing code

Communicate over virtual networks

Pros:
� Test generated protocols (almost) ‘for real’
� Behaviour should be identical to corresponding physical network

(modulo timing)
� Easy to configure
� Event traces

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 13 / 20



Simulation

Use QEMU to emulate multiple routers on single machine

Run real OS and routing code

Communicate over virtual networks

Pros:
� Test generated protocols (almost) ‘for real’
� Behaviour should be identical to corresponding physical network

(modulo timing)
� Easy to configure
� Event traces
� Cheap!

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 13 / 20



Simulation

Use QEMU to emulate multiple routers on single machine

Run real OS and routing code

Communicate over virtual networks

Pros:
� Test generated protocols (almost) ‘for real’
� Behaviour should be identical to corresponding physical network

(modulo timing)
� Easy to configure
� Event traces
� Cheap!

Cons:

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 13 / 20



Simulation

Use QEMU to emulate multiple routers on single machine

Run real OS and routing code

Communicate over virtual networks

Pros:
� Test generated protocols (almost) ‘for real’
� Behaviour should be identical to corresponding physical network

(modulo timing)
� Easy to configure
� Event traces
� Cheap!

Cons:
� Timing is unrealistic (shared CPU, network latency)

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 13 / 20



Simulation

Use QEMU to emulate multiple routers on single machine

Run real OS and routing code

Communicate over virtual networks

Pros:
� Test generated protocols (almost) ‘for real’
� Behaviour should be identical to corresponding physical network

(modulo timing)
� Easy to configure
� Event traces
� Cheap!

Cons:
� Timing is unrealistic (shared CPU, network latency)
� No heterogeneity of hardware or code

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 13 / 20



Simulation

Use QEMU to emulate multiple routers on single machine

Run real OS and routing code

Communicate over virtual networks

Pros:
� Test generated protocols (almost) ‘for real’
� Behaviour should be identical to corresponding physical network

(modulo timing)
� Easy to configure
� Event traces
� Cheap!

Cons:
� Timing is unrealistic (shared CPU, network latency)
� No heterogeneity of hardware or code

What do you do?

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 13 / 20



Future work

Expressiveness e.g. how do we model EIGRP in general?

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 14 / 20



Future work

Expressiveness e.g. how do we model EIGRP in general?

How does forwarding fit into the model of routing?

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 14 / 20



Future work

Expressiveness e.g. how do we model EIGRP in general?

How does forwarding fit into the model of routing?

Generalise OSPF and BGP implementations

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 14 / 20



Future work

Expressiveness e.g. how do we model EIGRP in general?

How does forwarding fit into the model of routing?

Generalise OSPF and BGP implementations

Redistribution

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 14 / 20



Demonstration: algebra

preorder-semigroup bw_dist =
lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus>

Algebra is non-monotonic

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 15 / 20



Demonstration: algebra

preorder-semigroup bw_dist =
lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus>

Algebra is non-monotonic

Monotonicity: m1 ≤ m2 ⇒ p(m1) ≤ p(m2)

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 15 / 20



Demonstration: algebra

preorder-semigroup bw_dist =
lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus>

Algebra is non-monotonic

Monotonicity: m1 ≤ m2 ⇒ p(m1) ≤ p(m2)

<40,50> ≤ <10,1>

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 15 / 20



Demonstration: algebra

preorder-semigroup bw_dist =
lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus>

Algebra is non-monotonic

Monotonicity: m1 ≤ m2 ⇒ p(m1) ≤ p(m2)

<40,50> ≤ <10,1>

Apply policy <10,1>: <10,51> �≤ <10,2>

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 15 / 20



Demonstration: algebra

preorder-semigroup bw_dist =
lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus>

Algebra is non-monotonic

Monotonicity: m1 ≤ m2 ⇒ p(m1) ≤ p(m2)

<40,50> ≤ <10,1>

Apply policy <10,1>: <10,51> �≤ <10,2>

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 15 / 20



Demonstration: algebra

preorder-semigroup bw_dist =
lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus>

Algebra is non-monotonic

Monotonicity: m1 ≤ m2 ⇒ p(m1) ≤ p(m2)

<40,50> ≤ <10,1>

Apply policy <10,1>: <10,51> �≤ <10,2>

Involves ‘counting to infinity’

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 15 / 20



Demonstration: algebra

preorder-semigroup bw_dist =
lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus>

Algebra is non-monotonic

Monotonicity: m1 ≤ m2 ⇒ p(m1) ≤ p(m2)

<40,50> ≤ <10,1>

Apply policy <10,1>: <10,51> �≤ <10,2>

Involves ‘counting to infinity’

Trace from real code running on virtual network

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 15 / 20



Demonstration: algebra

preorder-semigroup bw_dist =
lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus>

Algebra is non-monotonic

Monotonicity: m1 ≤ m2 ⇒ p(m1) ≤ p(m2)

<40,50> ≤ <10,1>

Apply policy <10,1>: <10,51> �≤ <10,2>

Involves ‘counting to infinity’

Trace from real code running on virtual network

(Adjust timings, disable triggered updates)

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 15 / 20



Demonstration: topology (1)
2

<20, 25>

<10, 1>

<10, 4>

7

4

<10, 1>

31

<20, 25>

5

<10, 1>

<10, 1>

<10, 1>

6

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 16 / 20



Demonstration: topology (2)
2

<10, 1>

<10, 4>

7

4

<10, 1>

31

<20, 25>

5

<10, 1>

<10, 1>

<10, 1>

6

<20, 25>

<10, 2>

<10, 1>

<10, 5>

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 17 / 20



Demonstration: topology (3)
2

<10, 1>

<10, 4>

7

<10, 1>

31

<20, 25>

5

<10, 1>

<10, 1>

<10, 1>

6

<20, 25>

<10, 51>

<40, 50>

4

<10, 5>

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 18 / 20



Demonstration: topology (4)
2

<10, 1>

<10, 4>

7

<10, 1>

31

<20, 25>

5

<10, 1>

<10, 1>

<10, 1>

6

<20, 25>

<40, 50>

4

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 19 / 20



Demonstration: topology (5)
2

<10, 1>

<10, 4>

7

<10, 1>

31

<20, 25>

5

<10, 1>

<10, 1>

<10, 1>

6

<20, 25>

<10, 51>

<40, 50>

4

<10, 54>

Billings, Taylor, Griffin (Cambridge) An architecture for metarouting RiNG Workshop Dec. 2007 20 / 20


