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Metarouting

Define a metalanguage in which we can write new routing protocols

Mechanise the ‘boiler-plate’ for routing protocols e.g. wire formats,
data-structures, policy application, metric comparisons

Automatically check correctness conditions

Compile to efficient code

BGP in a few pages?

Create a tool for network researchers / operators

Long-term project, just getting started

First ever demonstration of working code
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Example RAML specification
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Policy application: add distance, minimise bandwidth
� <dist=1, bw=60> . <dist=10, bw=50>
� ⇒ <dist=11, bw=50>

Automatically infer monotonicity

Use with generalised Dijkstra (e.g. OSPF, IS-IS) or vectoring
mechanism (e.g. RIP, BGP)
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Example RAML specification (2)

preorder-semigroup bw_dist =
lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus>

Order: compare bandwidth, tie-break on distance

Policy application as before

Increasing (not monotonic).

Can only use with vectoring (e.g. RIP, BGP). [Sobrinho03]

Can count to infinity

Will demonstrate later!
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Example RAML specification (3)
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Example RAML specification (3)

preorder-semigroup bw_dist_path =
lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus,
path : router_path>

Order: as before, but additionally tie-break on path length

Policy application: as before, but add on new path element

Additional constraint: no duplicate path elements (cf. BGP)

No counting to infinity

Lots of other possible specifications. . .
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Example of generated code
static int mrc_int_cmp(mrc_int_t x, mrc_int_t y) {

return y - x;

}

static int mrc_string_cmp(mrc_string_t x, mrc_string_t y) {

int res;

if (x == y)

res = 0;

else /* Lexicographic ordering */

res = strcmp(x->value, y->value);

return res;

}

static int mrc_list_cmp(mrc_slist_t x, mrc_slist_t y) {

int res;

if (x == y) /* Physical equality */

res = 0;

else {

for(; x && y; x = x->next, y = y->next)

if ((res = mrc_string_cmp(x->value, y->value))) /* Elements non-equal */

goto end;

if (x == NULL) {

if (y == NULL) /* Structural equality */

res = 0;

else /* x is prefix of y */

res = -1;

}

else /* y is prefix of x */

res = 1;

}

end: return res;

}
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Generalised routing algorithms

Take existing routing protocol e.g. RIP, BGP, OSPF, IS-IS

Abstract metric-specific operations behind API

e.g. comparisons, policy application, printing, marshaling, ...

Currently: generalised Quagga RIP implementation

Result: generalised soft-state, distance vector protocol.
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API for generalised RIP

metric_t metric_parse(const char*);
size_t metric_print(char*, size_t, metric_t);

metric_t metric_copy(metric_t);
void metric_free(metric_t);

size_t metric_marshal(void*, size_t, metric_t);
metric_t metric_unmarshal(const void*, size_t);

metric_t metric_infinity(void);
metric_t policy_apply(policy_t, metric_t);

int metric_is_better(metric_t, metric_t);
int metric_is_infinity(metric_t);
int metric_is_equal(metric_t, metric_t);
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Efficient code for metrics
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Efficient code for metrics

3 areas: time, memory, bandwidth

‘Reasonable’ data-structures e.g. red-black trees for sets

Only store metrics on heap if they don’t fit within a word

Maximise sharing
� Decreased memory usage
� Fast comparsions using pointer equality checks
� Side-effect: immutable metrics

Clean code that can be optimised by the C compiler

Goal: tunable tradeoff between time and memory
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Performance: memory
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Performance: CPU
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Simulation
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Simulation

Use QEMU to emulate multiple routers on single machine

Run real OS and routing code

Communicate over virtual networks

Pros:
� Test generated protocols (almost) ‘for real’
� Behaviour should be identical to corresponding physical network

(modulo timing)
� Easy to configure
� Event traces
� Cheap!

Cons:
� Timing is unrealistic (shared CPU, network latency)
� No heterogeneity of hardware or code

What do you do?
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Future work

Expressiveness e.g. how do we model EIGRP in general?
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Future work

Expressiveness e.g. how do we model EIGRP in general?

How does forwarding fit into the model of routing?

Generalise OSPF and BGP implementations

Redistribution
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lex_product <bw : positive_integer_gte_min,

dist : positive_integer_lte_plus>

Algebra is non-monotonic

Monotonicity: m1 ≤ m2 ⇒ p(m1) ≤ p(m2)
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Involves ‘counting to infinity’

Trace from real code running on virtual network

(Adjust timings, disable triggered updates)
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