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Chapter 1

Introduction

1.1 Background

Distributed computation is a hard problem. It is remarkable that the In-
ternet functions at all. Servers crash and network connections fail. And
all too often the component systems interact in unforseen ways. Bug-fixes
are commonplace, causing the concurrent deployment of multiple versions of
software. Ad-hoc methods are used to transfer code and data. Mainstream
programming languages, including ML, Java and C¥, provide little help for
the systems designer.

The Acute language, developed by researchers at Cambridge and IN-
RIA Rocquencourt, addresses some of these problems. It extends the core
O’Caml language to provide facilities such as type-safe marshalling, dynamic
linking and rebinding. These features permit distributed infrastructures to
be built as simple libraries. Furthermore, the language is backed by a clean
semantic model.

1.2 Project aims

The Acute language currently runs under an interpreter. The compiler emits
an intermediate language, which is essentially the abstract syntax of Acute.
The runtime then performs reductions over this language form. Whilst this
simple approach to program execution is useful for clarifying the operational
semantics, the execution speed is typically several orders of magnitude slower
than that of the O’Caml runtime.

The aim of this project was to increase the performance of a fragment of
Acute by compiling the intermediate language into a more efficient, low-level
format. We chose to target O’Caml bytecode due to the similarities between
Acute and O’Caml. Additionally, the O’Caml virtual machine offers a high
performance, cross-platform execution environment.

From the outset of this project it was clear that the proposed work



would require extending the O’Caml runtime in order to synthesise the novel
Acute primitives. However, it was not obvious whether many of these new
facilities for distributed programming were amenable to an efficient, low-
level implementation. This work therefore has direct implications on the
future use of the Acute features in production quality languages.

1.3 The Acute language

We shall assume some familiarity with the ML language. The O’Caml syntax
that Acute extends is similar to ML and hence should be easily understand-
able.

The main experimental part of this project concerned the integration
of the Acute marshalling primitives into the O’Caml runtime. In outline,
marshalling allows the interconversion between arbitrary values and byte-
strings. This section contains a brief overview of marshalling as well as
the interactions between modules and rebinding. Further information is
contained within the Acute Technical Report [13].

1.3.1 Marshalling

Suppose that we have just entered the code for the successor function into
the interactive Acute top-level interpreter!. We might then wish to send
this function value to another runtime by using the I0.send function of
language type string -> unit. We must therefore first convert our succes-
sor function into a string value by using the marshal keyword.

let succn =n + 1 in
let s = marshal "MK" succ in
I0.send s

From within a separate Acute interpreter we invoke the I0.receive
function to retrieve the string value. Using the unmarshal keyword, we ‘re-
animate’ the original function value. Applying this function to the integer
value 42 yields 43 — our successor function has been successfully copied to
this second runtime.

let s = I0.receive () in
let succ = unmarshal s as (int -> int) in
succ 42

Temporarily ignoring the use of the MK value during marshaling, we note
that the unmarshalling primitive is supplied with the expected value type of
int -> int. This is necessary to permit type-checking. If the unmarshalled
value is of a different type then the runtime raises an exception.

'For simplicity, we give the corresponding fragments of compilable Acute
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1.3.2 Modules and rebinding

In the general case we might wish to marshal a function that references mod-
ule values. Clearly we can expect some modules to be present on all systems
— perhaps they are part of our software distribution, or they might even be
packaged with the language runtime. Marshalling such modules would be
wasteful of resources. Module M1 below shall assume this ubiquitous role.
However, other modules, such as M2, may have only been recently developed
or updated. We cannot guarantee that these modules will be present at
unmarshal time. Therefore, should such module definitions be referenced
by a marshalled value, then they must also be marshalled.

In this second example, we see Acute’s linear sequence of marks and
modules. An Acute program simply consists of a sequence of zero or more
marks and modules, followed by at least one process. The mark MK is used
to partition the modules M1 and M2. Although the marshalled function f
references both M1 and M2 (via module fields M1.x and M2.y respectively),
only M2 occurs after the marshal mark MK. Therefore we only marshal module
definition M2 along with f£.

module M1 : sig val x:int end = struct let x = 17 end
mark "MK"
module M2 : sig val y:int end = struct let y = 42 end

let £ () = Ml.x + M2.y in
let s = marshal "MK" f in
I0.send s

In our second runtime, module M1 is indeed present. Upon unmarshalling
f we simply rebind the M1.x field reference to this module definition. How-
ever, as anticipated, module M2 is absent. The runtime adds the included
definition to end of the mark/module list for the use of f. Applying f to
the unitary value results in the expected integer value of 59.

module M1 : sig val x:int end = struct let x = 17 end
let s = I0.receive () in
let f = unmarshal s as (unit -> int) in

f Q0

This rebinding facility means that Acute cannot use standard call-by-
value operational semantics. This is because we need to preserve module
references in order to permit later rebinding. Therefore Acute uses a redex-
time variant for module references, where the values are only instantiated
when they occur in redex-position. Standard call-by-value operational se-
mantics are maintained for local expression reduction. In the above exam-
ple, both M1.x and M2.y are redex-protected because they occur within the
body of the marshalled function.
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The Acute language also allows the developer to specify minimum ver-
sions of modules to which an unmarshalled value may rebind. This facility
becomes invaluable when propagating updates to a distributed system. Al-
though we do not further explore this facility during the project, we do lay
the groundwork for such functionality.

1.4 Related work

The O’Caml runtime does itself support a limited form of marshalling. How-
ever, there is no guarantee of type safety. Furthermore, no actual code trans-
fer occurs; bytecode is simply marshalled as a code pointer and therefore can
only be read back in a process running exactly the same code. This would
have prevented us from transferring our successor function to the second
runtime. The Acute language overcomes this severe limitation.

The JoCaml language [7] extends the O’Caml runtime, adding support
for the distributed join-calculus programming model. The location and
channel facilities operate at a considerably higher level of abstraction than
the Acute primitives, although they may be programmed as an Acute li-
brary. Few of the implementation details are published.

The Java language [1] permits the type-safe marshalling of arbitrary
values through the use of serialisation. However, these facilities are class-
based rather than directly integrated into the language. Furthermore, in
contrast to Acute, there is no language-level support for versioning (with
the exception of class serial numbers) or for the controlled rebinding of
object references. Whilst Acute permits the marshalling of threads, there
is no such facility in Java. Combined with the lack of a clean semantic
model for object marshalling, these shortcomings hinder the development of
distributed systems under Java.

12



Chapter 2

Preparation

2.1 Overview

This project was broadly divided into three stages. Initially, the back-end
of the Acute compiler was modified to output O’Caml bytecode object files.
We then extended the O’Caml runtime to support the marshalling of integer
and function values. Finally, as an ambitious extension, we enhanced the
compiler and runtime to support modules and rebinding.

In this chapter we detail the requirements and development methods
used throughout the project. We then explore the underlying principles
used in the design of the bytecode compiler, before proceeding onto an in-
troduction into the operation of the O’Caml virtual machine. This latter
section becomes relevant when we consider the runtime extraction of byte-
code during the marshalling of function values.

2.2 Requirements

A requirement is ‘a condition or capability needed by a user to solve a prob-
lem or achieve an objective’ [2]. The high-level requirements analysis for a
compiler of a well-specified language is relatively straightforward. The com-
piler must accept a given grammar and output valid code for the specified
target architecture. Based upon the acceptance criterion ventured in the
project proposal and considerable additional research, the following set of
requirements was formulated for the compiler and runtime extensions:

e The compiler must accept the shaded terms from the source grammar
specified in Figure 2.1.

e The compiler must output valid O’Caml object files that are accepted
by the O’Caml linker.

13



e The operational semantics of the executable bytecode file running un-
der the modified O’Caml virtual machine must match those detailed
in the Acute Technical Report [13].

e The performance of the resulting bytecode must be comparable to that
of the equivalent bytecode produced by the O’Caml bytecode compiler.

The shaded terms of the grammar in Figure 2.1 essentially represent
the Acute version of the simply-typed lambda calculus, extended with mar-
shalling operations. We subsequently extended the compiler to support the
remainder of this grammar fragment during the third stage. Note that the
grammar terms are given in their sugared form with full type annotations.

2.3 Development model

The spiral development model [5] was a clear choice for the software devel-
opment. It specifies a form of evolutionary development using the waterfall
development model [12] for every step. Each stage is evaluated before ad-
vancing on to the next iteration.

During the project it was possible to formulate a relatively complete,
high-level specification from an early stage. This could be easily translated
into a modular architecture for the compiler. The spiral development model
allowed the sequential implementation of compiler modules and runtime ex-
tensions, but with the flexibility to iterate the development and evaluation of
those that were more complex. For example, we were unsure of the exact de-
tails of the bytecode emission to the object files. Once development reached
this latter stage, considerable time was spent prototyping and evaluating
this module.

2.4 Languages

The bytecode compiler was written in the Fresh O’Caml programming lan-
guage. O’Caml is a strongly typed, general purpose programming language
from the ML family. Fresh O’Caml adds additional features to the language
to allow the efficient manipulation of object-level syntax involving bind-
ing operations. Both the Acute compiler and runtime are written in Fresh
O’Caml. The Fresh O’Caml language was ideally suited to the purpose of
compiler implementation. For example, we found the fresh name generation
especially useful. However, the use of this language also allowed us to easily
interface to the Acute compiler in order to extract the intermediate language
form.

During the second and third stages of the implementation, we used the C
language to add marshalling facilities to the O’Caml runtime. The O’Caml
developers have provided a well-documented C application programming

14



Standard library constants

n

X
Types
T == int | string |bool |unit| T — T’
Constructors
Cy =
Operators

op == (Zit) [() (S TG)E T ] =

Expressions
e u= (p | function mich | fun mich | op™ ey ... e,
z" ey ... ep| x |Mpy.x | if e; then eg else e3

e1; ex| ep ea |let p=e¢’ ine”

let rec z : T = function mich in e

!
|
| letz: Tpy...pp=¢ine”
!
let recz : T py...pp=¢ in e”
p p
|

marshal e; e : T | unmarshal e as T

Matches and patterns

mtch = p—e
p = (z:T) |(C:T)

Signatures and structures

sig == empty | val x, : T sig

Sig = sig sig end

str = empty | let x, : T p1...py = € sir
Str = struct sir end

Source definitions and compilation units

sourcedefinition = module My; : Sig = Str | mark MK
compilationunit = empty | e |sourcedefinition ;; compilationunit
\ includesource sourcefilename ;; compilationunit

Figure 2.1: Supported source grammar
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interface for such purposes. The O’Caml linker can be configured to output
custom runtimes incorporating additional C object files. This code can then
be easily invoked from within O’Caml bytecode.

The project made extensive use of testing throughout the implementa-
tion phases. A Perl script was created to automatically preprocess, compile
and execute Acute test files. Perl is ideally suited to such file and text manip-
ulation tasks. Benchmarking was conducted using a set of Bash shell scripts.
The GNU Make system was used for high-level control during compilation,
testing and benchmarking.

This dissertation was prepared in the Latex document preparation sys-
tem. The facilities for the partitioning of source files and the typesetting of
rules were found to be especially useful.

2.5 Starting point

Many areas of this project were either new or indeed experimental. The
author’s knowledge of compilers was limited to the details covered in the
Part IB Compiler Construction [10] course. The Part II Types [11] course
occurred towards the end of the Michaelmas Term and therefore it was
necessary to independently study the lecture notes. Neither O’Caml nor
Acute had been previously covered.

2.6 Code reuse

This project directly extended the Acute compiler, although the source trees
were kept separate in order to facilitate updates to the Acute code. The
import stage of the bytecode compiler invoked the Acute compiler in order
to extract the intermediate language syntax tree.

We used the linking facility of the O’Caml compiler to create custom
runtimes from our emitted bytecode object files. We directly invoked the
linker from the command line.

It was necessary to study the high-level algorithms and data formats
used by the O’Caml bytecode compiler during the bytecode generation and
emission stages. Whilst we directly used both the O’Caml object file de-
scriptor datatype as well as the instruction datatype, all other code was
independently produced.

The test file format used by the automated regression testing system was
based upon that used by Acute. However, the actual Perl testing program
was independently produced.
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2.7 Version control and backup

The GNU Revision Control System was used to track the changes between
versions of files. Files were regularly checked into the system, especially
before major changes were made. This allowed the easy roll-back of changes.

A shell script was used to make automated hourly snapshots of the source
tree to the Pelican archive server throughout the project. The project work
was also backed up onto Compact Disc format on a frequent basis. Although
there was no need to restore from either facility during the course of the
project, both were initially tested to ensure that recovery from disc failure
was indeed possible.

2.8 Compilation techniques

Several useful references were found detailing compiler construction for func-
tional languages [3], [4], [10]. Taken in conjunction with existing O’Caml
design documents, this permitted the design of a small, moderately efficient
compiler to target O’Caml bytecode. In this section we explore two key
compilation techniques know as closure conversion and hoisting.

2.8.1 Closure conversion

In most lexically scoped, higher-order languages, a function is compiled into
a closure. The closure consists of two parts: an environment and the code
representation of a closed lambda abstraction. The dynamically created
environment maps identifiers to values.

During compilation, lambda abstractions are converted into closures by
a technique known as closure conversion. This separates program code from
data. All terms are rewritten so that they are of closed form. This requires
that any variables from the context must be explicitly passed as arguments
to the function. We do this by creating an environment which is paired with
the (now closed) code. Together, this forms a closure. The technique of
closure conversion is very similar to lambda lifting, but instead makes the
environment representation explicit.

Consider the source code in Figure 2.2. The function definition £ is not
of closed form; in addition to the formal parameter x, it also references the
identifier a. Closure conversion transforms the code to make a an additional,
explicit parameter of f.

We illustrate an untyped, source to source example of closure conversion
in Figure 2.3 (based upon [9]). We explicitly pass £ an environment con-
taining the the required identifier bindings. The function body must now
access the value of a by projecting it from the environment.

The environment in Figure 2.3 contains a redundant binding for b. It
is certainly safe to pass in the values of all current identifiers in scope.

17



However, we can increase the runtime performance of the code by only
passing in those bindings that are actually accessed. More formally, it is
sufficient for the environment to only contain bindings for the free variables
of £. An example of this optimisation is shown in Figure 2.4.

2.8.2 Hoisting

After closure conversion, nested (closed) lambda terms still remain. Using
a hoisting operation, we name the closed lambda terms and lift them to
the top level of the program. The nested lambda terms are replaced by the
names of the hoisted closures. This completes the separation between code
and data.

2.9 (O’Caml bytecode

O’Caml bytecode is interpreted by the O’Caml virtual machine. The byte-
code format is untyped. Garbage collection is used to reclaim unused mem-
ory. An O’Caml source file is compiled to a relocatable bytecode object file
by using the ocamlc program. Once linked, a bytecode program can then
be executed on the virtual machine by using the ocamlrun program.

Before designing the Acute bytecode compiler, it was first necessary to
understand the operational semantics of the O’Caml virtual machine. The
absence of official documentation did not facilitate this task. However, two
partially relevant documents were found. The first sketched the basic byte-
code level functionality of the O’Caml virtual machine [6]. Although the
scope of the document was limited, it did provide an important introduc-
tion in the virtual machine operation. The second document outlined the
early design of the ZINC virtual machine, which later evolved into the cur-
rent O’Caml virtual machine [8].

The analysis of the bytecode semantics proceeded by using the opcode
printing facility of ocamlc. This prints a sequence of bytecode mnemonics
which correspond to the bytecode output. This allowed the author to un-
derstand the translation of relatively simple O’Caml programs. Towards the
end of this stage it was possible to hand compile and run simple programs.

The second task was to understand the object file format. The object
file contains a block of relocatable bytecode, in addition to a data structure
detailing relocation information. One or more object files may then be
linked together to produce a bytecode executable file. Again, no public
documentation exists for the file format. Therefore it was necessary to
manually analyse several hundred lines of the compiler source code in order
to reverse-engineer the format.
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2.9.1 Virtual machine operation

The O’Caml virtual machine uses a stack-based architecture incorporating
an accumulator. Most operations implicitly operate upon the accumulator,
taking additional arguments from the top of the stack as necessary. There
are also operations to add and remove elements from the stack. For the pur-
poses of this discussion, there are three important virtual machine registers:

accu The accumulator register holds the current working value. The com-
bined use of an accumulator register and stack increases runtime per-
formance.

sp  The stack pointer register references the first free location on the heap-
allocated stack. The O’Caml stack grows downwards towards lower
memory addresses.

pc The program counter references the next instruction to execute.

In order to make the operation of the virtual machine more concrete,
we shall consider the bytecode representation of the arithmetic expression
17 * 42:

const 42
push
const 17
mulint

Upon execution, this code causes the value 42 to be placed into the
accumulator. This value is then pushed onto the stack in order to allow the
value 17 to be entered into the accumulator. The mulint instruction then
destructively multiplies the two values, leaving the result in the accumulator.
This operation is illustrated in Figure 2.5.

Referring to the fragment of O’Caml interpreter source code shown in
Figure 2.6, we see that the mulint instruction causes the values held in the
accumulator and the top stack position to be multiplied and placed into the
accumulator. The post increment on sp removes the top stack value after
multiplication. The Val_long and Long val macros convert values between
the interpreter and stack representations (see the next section). Next is
a macro which increments the program counter register and jumps to the
beginning of the enclosing switch statement.

Although the above example is relatively simple, it should give an indi-
cation of the operation of the O’Caml bytecode interpreter. In fact, the
O’Caml bytecode compiler performs many optimisations to increase the
common-case execution speed of the generated bytecode. For example, there
is a complex system for the partial evaluation of functions.
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let a = 17 in
let 42 in
let f = Ax. x + a

o’
1]

Figure 2.2: Original code

let a = 17 in
let 42 in
let f = (\env. Ax. x + (env.a)) {a=a,b=b}

o’
1]

Figure 2.3: Naive closure converted code

let a = 17 in
let 42 in
let £ = (\env. Ax. x + (env.a)) {a=a}

o’
]

Figure 2.4: Optimised closure converted code

Figure 2.5: Virtual machine stack operation during execution

Instruct (MULINT):
accu = Val_long(Long.val(accu) * Long val(ksp++));
Next;

Figure 2.6: Interpreter code for performing integer multiplication
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2.9.2 Runtime data representation

The stack contains word-sized values. Each value is either an immediate
value or a block value. A block value is a reference to a heap-allocated
block. Any given integer value x is represented as the odd value 2 x x + 1.
In contrast, block references are word aligned and hence are always even
values. This simple separation between the two kinds of data increases the
efficiency of garbage collection.

2.9.3 Block structure

Each block has a header, followed by a body of zero or more contiguous
words. The header structure is shown in the following diagram:

size colour tag

31 109 87 0

The size field indicates the total length of the block in words whilst the
colour field is used by the garbage collector. The tag field indicates the
kind of the block. For example, there is a closure kind.

2.9.4 Closures

An O’Caml function is implemented as a closure. The closure is constructed
at runtime and is represented as a heap-allocated block. The first field
of the body contains a pointer to the block of function bytecode. The
following fields contain the environment values. More information about
closure construction and manipulation is contained within Appendix F.

header code pointer envy e envy,_1

2.9.5 Object file format

An O’Caml object file contains a descriptor specifying relocation information
for the contained block of bytecode. The high-level structure object file is
summarised in the following diagram:

magic number

descriptor offset

relocatable bytecode

debugging information

descriptor
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2.9.6 Modules

O’Caml modules permit the programmer to group related definitions under a
single namespace. These definitions occur within a structure. The structure
is bound to a name using the module keyword. A module has an associated
signature that acts as an interface to the structure. This allows us to support
abstraction through encapsulation.

Each O’Caml source file corresponds to a module definition, and may be
separately compiled to produce an object file. For example, we may compile
the source file foo.ml to produce the object file foo.cmo. This corresponds
to a language-level module named Foo.

An evaluated module definition is stored as a block at runtime. The
structure field values are sequentially stored within the body. This module
block is then stored within a field of a single global block (caml_global data).
Fields from this global block are accessed using the setglobal and getglobal
instructions.

During compilation, the locations of each module within the global block
are unknown. Therefore we symbolically label fields within this block ac-
cording to their module names, placing appropriate entries into the object
relocation tables. All module dependencies are resolved during linking and
hence each module definition can be allocated to a specific field within the
global block.
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Chapter 3

Implementation

This chapter documents the the project implementation. Due to space lim-
itations, many of the low-level details are omitted; the main focus is upon
the design choices and underlying algorithms. There are three parts, cor-
responding to the three phases of implementation, detailing (I) the core
bytecode compiler, (II) support for marshalling and (IIT) support for mod-
ules and rebinding. For simplicity, we have included the details of module
compilation within Part I.

Part I: The Bytecode Compiler

3.1 Overview

The high-level design of the Acute Bytecode Compiler (abc) is given in
Figure 3.1. The O’Caml module system is used to partition the source
files in a corresponding fashion. The design is standard for a compiler of
a functional language [3], [4]. The bytecode generation phase follows the
strategy used by the O’Caml bytecode compiler. A single ‘pipeline’ module
passes data through the compilation stages, optionally pretty-printing the
abstract syntax trees between each stage.

Although we describe the implementation of the finished compiler, it
is important to note that many of the supported features were iteratively
added. Initially, only a very restricted subset of Acute was supported. This
allowed the sequential implementation of the compiler stages, with the main
focus upon the correct architecture rather than on the specifics of Acute.
The supported language could then be easily enlarged, finally including fea-
tures such as recursive functions and modules.

Throughout this section, we shall consider the compilation of the simple
Acute expression shown in Figure 3.2. This allows us to provide a concrete
example of the bytecode compilation process.
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import lambda typecheck closure

convert convert,

link emit generate closure
bytecode bytecode hoist

Figure 3.1: Compilation stages

let a = 0 in
let b =1 in
let £ = fun x -> x + a in
f 42
Figure 3.2: A simple Acute expression
3.2 Import

The purpose of this stage is to invoke the Acute compiler and translate the
Acute intermediate language output into a format that can be easily ma-
nipulated by the subsequent stages. More concretely, the Acute output is
converted into a simplified list of mark and module definitions, followed by
a single expression. Each module definition contains a signature and struc-
ture. The signature is an association list of identifiers and types, whilst the
structure is an association list of identifiers and values. Marks are repre-
sented as strings. The expression following the definitions is treated as a
module containing a single identifier-value pair with an empty signature.

This stage also maps the Acute intermediate language structure val-
ues onto a simplified abstract syntax datatype. For those expressions that
are supported, there is a one-to-one mapping onto the simplified datatype.
Otherwise, an exception is raised detailing the unsupported expression. The
signature types are treated similarly, with a straightforward mapping for the
supported kinds.

The Acute intermediate language abstract syntax tree corresponding to
our example is shown in Figure 3.3. Some of the nodes have been slightly
simplified to aid comprehension. The dashed line denotes omitted nodes.
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3.3 Lambda conversion

This stage converts the restricted Acute intermediate language expression of
each structure field into an enriched version of the simply-typed lambda cal-
culus. Many functional language compilers (including O’Caml) use a variant
of the lambda calculus for their intermediate language. This representation
is a clear choice for several reasons:

e The conversion to the lambda calculus from the Acute intermediate
language is straightforward.

e Once closure converted, it is convenient to translate lambda calculus
expressions into the target bytecode.

e The clear semantics of the lambda calculus facilitate optimising trans-
formations if required.

The simply-typed lambda calculus requires that the formal parameters
of lambda abstractions are assigned types. However, the Acute intermediate
language is fully type-annotated. Therefore we naively use this information,
verifying correctness during the typechecking stage.

Each identifier in the Acute intermediate language is freshly generated.
Therefore we do not have to concern ourselves with issues of variable capture.
The result of the lambda conversion of the example expression from the
previous stage is shown in Figure 3.4. Again, some simplifications have
been made with regard to the representation of constructors for the primitive
values and operators. However, the shape of the tree is accurate.

The main complexity of the lambda conversion phase arises from the
desugaring of the Acute match constructs. The associated primmatch nodes
may have multiple child nodes to permit the deconstruction of variant types.
This is redundant for our purposes. However, there is a straightforward
mapping for the other expression kinds.

The algorithm for the translation of a match node is given in Figure 3.5.
Essentially, a match creates a new identifier binding for the specified value.
We therefore translate this into an application! of the value to a lambda
abstraction. For example, we translate the root node of Figure 3.3 into an
application of a lambda abstraction to the value 0.

3.4 Typechecking

The typechecking stage imposes a well-formedness condition upon the lambda
calculus expressions. Ideally this stage would be redundant; the Acute com-
piler also contains a typechecking stage, and therefore discards untypable

!We denote the application of a lambda abstraction by the symbol @
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match

int primmatch
0
var match
/\
a type int primr‘natch
tint 1 af)p
A

id int
f 42

Figure 3.3: Acute intermediate language abstract syntax tree

Dy

\

a:int

De

)

b:int @
)\/\)\
f:int->int Q@ x +

)

2 X a

f 4

Figure 3.4: Extended lambda calculus abstract syntax tree
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let rec conv_prim_expr e =
match e with
| Astsimple.Match (x,y) ->
Astlambda.App(conv prim mtch y, conv_prim expr x)

Figure 3.5: Code to translate a match node

programs. However, this stage provides a valuable correctness confirmation
in the presence of possible compiler bugs (although none were found).

Typechecking occurs at the module level. In outline, the algorithm ex-
amines each structure field, calculates the type and verifies that this matches
that stored in the associated signature field. Failure of typechecking causes
a diagnostic message to be printed.

The core typing algorithm is standard for the simply-typed lambda calcu-
lus. However, based upon the typing algorithm found in the Acute Technical
Report [13], it was extended to support modules. The full set of typing rules
is given in Appendix B.

The main rule for typing a structure is given below. E maps module
identifiers to signatures whilst I' maps local identifiers to values. Where I"
is omitted we implicitly assume that this environment is empty. The linear
scoping of structure fields is clearly illustrated; once a field has been typed,

it is added to the list of assumptions for the typing of subsequent structure
fields.

E I'x:T F str : sig E,T'E v T

E, T :letx, = vsir : valx, : T sig

Once all structure fields have been successfully typechecked, the signa-
ture is added as a typing assumption for the use of latter modules. Again,
we see the linear scope in terms of module definitions. The rule for typing
a module is given below:

E + module My, : Sig = Str : My : Sig
E,Mj; : Sig F defs : ok
E + module My, : Sig = Str defs : ok

The accumulated typing assumptions are used when typing an expression
that includes a field projection from an earlier module:

Mjs € dom(E) E(Mys) = sig sig valx, : T sig’end
E,I' - Myx : T
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3.5 Closure conversion and hoisting

The closure conversion stage converts the lambda calculus expression of each
structure field into a set of one or more hoisted closures. We simultaneously
perform hoisting in this stage because it adds little complexity to the closure
conversion algorithm.

3.5.1 Closure data structure

Recalling the discussion of closures from the preparation section, each clo-
sure consists of a data structure containing the runtime environment paired
with a block of function code. The compile-time representation of a closure
consists of a record containing the following fields:

Closure name This is represented by a freshly generated identifier. Al-
though this identifier does not appear in the resulting bytecode, it
allows us to easily reference closures.

Function name This represents the bound name of the function by which
the closure code may perform a recursive call.

Formal parameter This corresponds to the formal parameter of the func-
tion code.

Environment This represents the formal parameters of the closure envi-
ronment. When outputting code to instantiate a closure, these param-
eters tell us which values should be passed to the closure environment.

Code This is identical to the simply typed lambda calculus datatype from
the previous stage, with the exception that lambda abstractions are
replaced by the name and actual environment parameters of the cor-
responding closure.

For example, the top-level closure of a structure field is called cmain.
There is a single fresh formal parameter mainx. The environment is neces-
sarily empty. The code constructs the closure for c1 (also with an empty
environment) and applies it to the value 0. We adopt the following repre-
sentation of this closure during pretty printing:

Closure (cmain, mainx, [])
(c1 : [1)eo

3.5.2 Closure conversion algorithm

The main closure conversion function performs a pattern match on the input
lambda expression. Figure 3.6 highlights the part of the algorithm that
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converts a lambda abstraction. We see that a fresh name for the closure
is constructed on lines three and four. On lines five to ten a closure is
recursively constructed and concatenated onto the list of existing closures.
The closure name and environment parameters are then returned.

We use the free variable optimisation of Section 2.8.1 on line nine. We
see that the environment is restricted to contain only those variables that are
free in the lambda abstraction. This optimisation was introduced to limit
the size of the closure environments; initially the environment contained all
of the identifiers currently in scope.

The closure conversion algorithm also accepts a list of previously con-
verted module definitions. This allows us to convert references to external
module fields into offsets within modules. For example, suppose the field x
is the first (or zeroth) within a module M. The identifier M.x would then be
translated to the pair (M, 0). This conversion is performed relatively late
in order to abstract away from implementation complexities. However, it is
required for the subsequent bytecode conversion stage.

Continuing with the compilation of our example expression, we obtain
the set of closures highlighted in Figure 3.7. We see that closure ¢3, corre-
sponding to the body of our original function f, contains the environment
variable a. The separation between code and data is now explicit.

3.6 Bytecode generation

The bytecode generation stage converts a list of closures into into a single
list of ‘high-level’ instructions. Each of the instructions has an immediate,
one-to-one correspondence to an actual O’Caml bytecode instruction, but in
a form that is amenable to manipulation. For example, we label instructions
by their corresponding closure name instead of referencing them by a relative
offset.

3.6.1 Overview

The algorithm to generate bytecode for a module proceeds in three distinct
phases. Initially we generate a block of ‘top-level’ bytecode. During this
stage we maintain a list cs of closures for later conversion to bytecode. In
outline, the algorithm iterates over each structure identifier within a module.
For each of the associated closure lists, we perform the following operations:

1. Generate ‘top’ bytecode for the expression contained within the cmain
closure.

2. Add the remainder of the associated closures to cs.

Ignoring the untranslated closures in cs, the generated code will calculate
each field value in turn, pushing the result onto the virtual machine stack.
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11

12

13

let rec conv_lambda (ds:def list) (e:lambda) =
| Astlambda.Fun (x,t,y) ->
let n = Ident.fresh prettyname

("c" ~ (stringof_int (incr count;!count)))
in let ¢ = { name = n;
arg = (x,t);
fnrec = None;
code = conv_lambda ds y;

env IdentSet.elements (fv e)}
in closures := c¢ :: !closures;
Astclosure.ClosureNonRecName (n, t,

List.map (fun x -> Astclosure.Id(x)) c.env)

Figure 3.6: Closure conversion code for a lambda abstraction

Closure (cmain, mainx, [])
(c1 : [1) @O
Closure (ci1, a, [1)
(c2 : [a]) @ 1
Closure (c2, b, [al])
(c4 : [1) @ (c3 : [al)
Closure (c4, £, [1)

f @ 42
Closure (c3, x, [a])
(+, x, a)

Figure 3.7: Hoisted closures
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This order is essential because later fields may make use of the values of
earlier fields. However, this means that the first field value becomes the last
(deepest) stack element. We wish to create a block where the first block
field corresponds to the first structure field. Therefore we must reverse the
order of the stack elements before creating the block of module values. We
therefore generate bytecode to perform the following:

1. Reverse the order of the stack values.

2. Create a block in the accumulator from the reversed stack values.
3. Pop the remaining stack elements from the stack.

4. Store the block in the global block.

Returning to cs, should it be non-empty then the block of top-level byte-
code will contain references to untranslated closures. We therefore translate
the remaining closures in cs according to the following algorithm:

1. Label the first instruction of the block of top-level bytecode as main.

2. Translate the remaining closures within cs, adding the new instruc-
tions to the head of the top-level bytecode.

3. Add a branch to main from start of the bytecode.

This strategy is consistent with that employed by the O’Caml compiler.
During linking, the blocks of bytecode are sequentially concatenated. There-
fore we require that the block of top-level bytecode occurs last so that exe-
cution can continue onto subsequent bytecode.

The high-level structure of the resulting bytecode is shown in Figure 3.8.
The list of instructions is now in a format suitable for conversion to actual
O’Caml bytecode instructions and subsequent emission to an object file.

3.6.2 Translation of a closure

The above discussion omits the important details of how to translate a
closure to a block of high-level bytecode. The main complexities arise out of
having to track the size of the current stack frame and the module identifiers
that have already been translated.

The closure translation function accepts the following arguments in ad-
dition to the closure:

Identifier list This contains the previously translated structure field iden-
tifiers for the current module. The main closure for a field may directly
reference previous field values. In this sense, it is not strictly closed.
Should the top-level closure need to access these, then the list gives
the order and hence the position on the stack at which the field value
may be located in the current, top-level stack frame.
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branch to main

main code for field 1

main code for field n

main: top code for field 1

top code for field n
reverse stack order

make block b of field values

pop rest of stack

store b in global block

Figure 3.8: High-level structure of object code

Bytecode instruction list This contains the current bytecode instruc-
tions. Whilst generating bytecode, we traverse the abstract syntax
tree in postorder, passing the current list of bytecode instructions as
an additional argument to the expression translation function. This
means that all future instructions (in terms of execution order) are
available, facilitating certain peephole optimisations.

Each closure contains a single expression which we recursively translate.
Whilst translating this expression we must keep track of the number of values
which have pushed onto the current stack frame so that we can correctly
access identifier values. When we encounter an identifier, it can be one of
three kinds:

Closure argument When a closure is applied, the argument is placed as
the first element upon the new stack frame. We can therefore access
it at as the bottom element of the current stack frame.

Environment field identifier We look up the identifier within the con-
taining closure, and generate an instruction to access it from the cor-
rect position within the current environment.

Module field identifier This can only occur within the main closure for
a field. The list of translated identifiers reveals the location within the
stack.
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let conv_expr : closure body -> closure -> ident list
-> int -> instr list -> instr list
= fun expr clos ids sz cont —>
match expr with

| Id x —>

locate_id x clos ids sz :: cont
| Const x —>

conv_const x :: cont
| Op (x,ys) —->

conv_expr_list ys clos ids sz
(conv_op_or_econst x cont)
| ClosureNonRecName (x,t,args) ->
conv_args args clos ids sz
(Pclosure ((List.length args), x) :: cont)

Figure 3.9: Closure expression translation

A fragment of the main algorithm for the translation of a closure expres-
sion is given in Figure 3.9.

The results of the translation of the example expression are shown in
Figure 3.10. We can clearly see the correspondence to the previous list of
closures of Figure 3.7.

3.7 Bytecode emission

This stage is responsible for translating each of the instructions in a sequence
of high-level bytecode into the corresponding O’Caml bytecode instructions.
We maintain a string buffer to which we write the instruction values. This
block of relocatable bytecode is then written into an object file. The algo-
rithm has two main complexities.

e Each reference to a labelled instruction must now be translated into
a relative bytecode offset. For example, the instruction to construct
a closure requires the relative word-offset of the associated function
code.

e A relocation table must be constructed. It contains the bytecode lo-
cation references to external resources as well as values such as string
constants that are too large to be directly included in the bytecode.

When we encounter a label reference, we invoke the ret_label function
with the label name. Should the label have already been defined, then the
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branch main
cl: int 1
push
acc 1
closure c2, 1
apply 1
return 1
c2: envacc 1
closure c3, 1
push
closure c4, O
apply 1
return 1
c4: int 42
push
acc 1
apply 1
return 1
c3: envacc 1
push
acc 1
add
return 1
main: int O
push
closure c1, O
apply 1
push
acc O
makeblock 1, 0
pop 1
setglobal Let!

Figure 3.10: High-level bytecode
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offset from the current string buffer output position is returned. Otherwise,
the offset of reference is associated with the label and the value of zero is
returned.

In the case of a label definition, we invoke the add_label function with
the label name and offset of definition. If the label has been previously ref-
erenced, then we backpatch the referencing locations with the actual offset.
We also record the location of the definition within the association list for
later references.

If we encounter a reference to one of the following kinds, we output a
temporary offset of zero and add an entry into the relocation table recording
the value and position of reference. The offsets are patched during linking
when the location of the external resources become known.

e String constant
e C primitive

e Global block

A fragment of the core translation algorithm for a high-level instruction
is shown in Figure 3.11.

For each instruction that we write to the string buffer, we first check that
there is sufficient space. If not, we double the size of the buffer and copy
across the current buffer contents. We initially set the buffer size to 1024
bytes, although this could be increased if larger programs were routinely
compiled.

Once all of the bytecode has been translated, we open an output stream
to an appropriately named file, and marshal the bytecode and relocation
table.

3.8 Object linking

We use the dual-function O’Caml bytecode compiler ocamlc to generate
a custom runtime containing the linked bytecode. We pass the following
options to the linker:

Executable name The name of the emitted bytecode executable file.

O’Caml libraries The name of the libraries containing the O’Caml func-
tions referenced by the bytecode. These are required when we interface
to existing O’Caml code.

O’Caml object files The correctly ordered list of object files that we have
just emitted.

35



let conv._prim p =
match p with
| Preturn n ->
output_op opRETURN;
output_int n
| Plabel 1 ->
add_label 1
| Penvacc n ->
output_op opENVACC;
output_int n
| Pacc n ->
if n = 0 then output_op opACCO
else (output_op opACC; output_int n)
| Papply n ->
if n = 1 then output_op opAPPLY1
else if n = 2 then output_op opAPPLY2
else if n = 3 then output_op opAPPLY3
else raise (UnsupportedOp "Papply, n > 3")
| Pclosure (nv,1) ->
output_op opCLOSURE;
output_int nv;
output_int (ret_label 1)

Figure 3.11: Algorithm for the translation of a high-level instruction
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C object files The name of the C object files containing the user-defined
primitive functions referenced by the bytecode. These are required
when we extend the runtime to permit marshalling.

3.9 Interfacing to existing O’Caml modules

We extended the project to allow the generated bytecode to access O’Caml
modules. This permitted compiled Acute code to make use of the O’Caml
graphics library, for example. Note that this facility is already supported
by the existing Acute interpreter; the Acute abstract syntax type contains
a constructor for O’Caml module field references. However we were ini-
tially unsure how we might incorporate this functionality into our generated
bytecode.

In principle, it is relatively easy to invoke other O’Caml bytecode. We
can use the getglobal instruction to retrieve the block of module structure
values. Providing that we know the relative position of the structure field, we
can then access the required field within the block. We therefore performed
the following modifications to the bytecode compiler:

Typechecker In order to typecheck references to the O’Caml module fields,
each must be assigned a type. Acute has tool support to automati-
cally extract these types from O’Caml source files. However, given
the limited number of O’Caml functions that were supported, it was
relatively easy to use a hard-coded mapping.

Bytecode generation We have to convert the module field names to con-
crete offsets within modules. Again, a hard-coded mapping was used.

Object file linking The O’Caml object files containing the referenced code
must be passed to the linker.

In each case, an O’Caml ‘shim’ module was required to wrap calls to the
intended target module. The shim modules provided simplified interfaces,
only using those types which were supported by abc. Shims for the graphics
module and input/output functions already existed in the Acute code for
this purpose. However, an additional interface to the TCP module was
implemented.
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Part II: Marshalling

3.10 Overview

The second stage of the implementation involved extending the abc compiler
and the O’Caml runtime to support the marshalling of program values.
Initially, we consider marshalling in the absence of module references.

We return to our successor function succ. This is represented at runtime
by a closure. Marshalling necessitates that we convert this block value into
a linear sequence of bytes. This marshal string must specify the type of the
marshalled value to ensure type safety at unmarshal time. Furthermore, it
must also contain a representation of the reachable bytecode instructions.
Finally, each of the closure environment values must also be marshalled. In
effect, we are capturing the complete runtime environment of succ. Note
that the marshal mark only becomes relevant when we consider the mar-
shalling of module references.

let succn =n + 1 in
let s = marshal "MK" succ in
I0.send s

The unmarshalling operation converts the received byte-string back into
a closure value. The type of the marshalled value must be compared to
the expected type, with an exception raised if they differ. The code and
environment values may then be unmarshalled. This requires the dynamic
allocation of code. Note that the bytecode compiler generates relocatable
bytecode, hence facilitating this operation. Execution can continue once the
closure has been reconstructed.

let s = I0.receive () in
let succ = unmarshal s as (int -> int) in
succ 42

3.11 Design

3.11.1 Primitives

The transfer of function values between runtimes necessitates the manipu-
lation of the virtual machine state; unmarshalling a function value requires
the dynamic allocation of closure code, whilst rebinding is dependent upon
maintaining the dynamic mark/module structure.

We follow the recommended method of extending the virtual machine by
generating a custom runtime. This operation is performed by the linker; we
simply invoke it with the C object files containing the marshalling primitives.
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The resulting executable file is fully self-contained. Note that all runtimes
participating in marshalling operations must be similarly extended.

The use of C primitives means that few modifications need to be per-
formed to the O’Caml bytecode generation stage. We marshal a value by
simply invoking the marshalling primitive from the bytecode, minimising
our reliance upon the untyped bytecode instructions. The primitive then
performs the necessary computation before returning a single value into the
accumulator.

Note that we originally proposed using dynamic linking of C libraries.
Although this method is indeed feasible, the custom runtime generation is
performed entirely by the existing O’Caml linker. This reduced the amount
of implementation work.

3.11.2 Types

We must perform a runtime check when unmarshalling a value v to verify
that the expected and actual types of v are equal. This requires that we
include a representation of the type of v within the marshal string. We use
a pretty-print of the type for this purpose. This aids debugging and has the
advantage that testing for type equality becomes a simple string comparison.
It is important to note that the method outlined above only guarantees
type safety if the marshal strings are unaltered. For increased robustness,
we might include a hash of the marshalled value and type. In an untrusted
environment we might wish to explore signing the marshal strings.

3.11.3 Wire format

We require the easy conversion between values and the wire format for the
marshal string. A self-delimiting structure is used to assist parsing, with
all variable length fields prefixed by the field length. Fields are tagged to
differentiate between immediate and closure values. The full grammar is
given in Appendix C. It is recommended that the marshalling details are
read in conjunction with this grammar.

3.12 Marshalling

The marshalling primitive converts a value to a linear sequence of bytes
containing the value type and the marshalled value. We give a diagrammatic
representation of this format:

type | value

The primitive maintains an internal character buffer to which values are
written. Once marshalling is complete, the buffer contents are copied into
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string "int -> int"
push

string "MK"

push

closure c1, O

prim marshal, 3

Figure 3.12: Bytecode for marshalling the successor function.

a block on the O’Caml heap. A reference to this marshal string is then
returned.

We initially discuss the interface to the marshalling primitive, before
exploring the specifics of code reachability and value marshalling.

3.12.1 Interface

We invoke the marshalling primitive with the marshal mark mk, value v and
type string t. All expressions are monomorphically typed, hence allowing
us to statically calculate t at compile-time. The C interface is given below:

value marshal (value mk, value v, value t);

We illustrate the invocation of this primitive in Figure 3.12. Our suc-
cessor function (compiled to closure c1) is marshalled with respect to the
MK mark. After the execution of the call to the primitive, the marshalled
function will be left in the accumulator for use in subsequent computation.

3.12.2 Code reachability

When marshalling a closure, we must include all instructions that are reach-
able from the closure code pointer c¢p. We perform an abstract interpretation
of the referenced instructions to calculate a safe approximation to the run-
time code reachability. In effect, we implement a wvery restricted O’Caml
bytecode interpreter; we are only concerned with the limits of the program
counter value during any possible future executions of the closure code.

In outline, we iterate over each bytecode instruction. If we encounter
an instruction to construct a closure, then we recursively follow the speci-
fied code offset. We always assume that all such closures are constructed;
undecidability prevents us from calculating the exact runtime reachability.
Encountering a return instruction causes our algorithm to return the current
limits of the emulated program counter value. The core of this algorithm is
given in Figure 3.13.
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(code *, code *) limits (code *cp)

{

code *low = cp;
code *high = cp;

// iterate over each closure instruction
for (; *cp != Return; cp++)
switch (*cp)
// closure construction
case Closure(_, cp’):
code *low’, *high’;

// calculate reachability
(low’, high’) = limits(cp’);

// keep maximal sequence

low = MIN(low, low’);
high = MAX(high, high’);
break;

}
}

// return reachability limits
return (low, MAX(high, cp));

}

Figure 3.13: Pseudo-code for calculating code reachability

We give a formal definition of code reachability in Appendix D. It is

recommended that this section is consulted for a more detailed account of

this complex operation.

3.12.3 Immediate values

In the case where v is an immediate value, we directly copy each of the byte

values into the character buffer.

3.12.4 Closure values

If v is a closure value then we must marshal all bytecode instruction that are
reachable from the code pointer, as well as each of the environment values.
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Code

We marshal the closure code by first calculating code reachability from the
code pointer. All code that is inclusively contained between the returned pair
of limits is directly copied into the character buffer. The wire format also
contains a code offset which points to the instruction originally referenced
by the closure code pointer. This information permits the reconstruction of
the closure.

Note that the O’Caml virtual machine performs a ‘threaded code’ opti-
misation at runtime whereby opcodes are converted into offsets into a lookup
table. In order to simplify code marshalling we disable this optimisation.
This is achieved by trivially modifying two of the O’Caml compiler header
files and recompiling O’Caml. The benchmarks of Section 4.6 demonstrate
that this modification has a minimal impact upon runtime performance.

Environment

An environment value may be of an immediate or closure kind. In each case,
we recursively apply the marshalling algorithm. The wire format specifies
the number of environment fields.

3.13 Unmarshalling

The unmarshalling primitive iterates through the characters of a marshal
string s. The type of the marshalled value is compared with the expected
type t. An exception is raised if the two differ. Otherwise the original
marshalled value is reconstructed. Again, we briefly discuss the interface
before exploring the specifics of unmarshalling immediate and closure values.

3.13.1 Interface

The interface to the unmarshalling primitive accepts two string values s
and t, which correspond to the marshalled value and the expected type
respectively:

value unmarshal (value s, value t);

3.13.2 Immediate values

In order to unmarshal an immediate value, we directly return the byte values
that we have received in the marshal string.
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3.13.3 Closure values

We unmarshal a closure by first allocating a closure block on the O’Caml
heap. The code pointer and environment fields of this block are filled dur-
ing the subsequent unmarshalling operation. Once complete, we return a
reference to this block.

Code

The marshalled closure code is copied into a block of memory allocated upon
the C heap. We then set the closure code pointer to the correct offset within
this memory. Note that the use of the C heap for code allocation simplifies
the implementation; we do not have to concern ourselves with the operation
of the O’Caml garbage collector. However, this does mean that the memory
is only freed when the runtime terminates.

Environment

Each environment field is recursively unmarshalled and then stored within
the correct field of the closure block.
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Part III: Modules and Rebinding

3.14 Overview

The final implementation stage involved extending the bytecode compiler
and runtime to support modules and rebinding. We have already covered
many the aspects of module compilation in Part I. Therefore in this section
we mainly focus upon the enhancements to the runtime extensions.

Returning to our second example from the introduction, our function f
references modules M1 and M2. These module references occur through the
use of getglobal instructions in the closure bytecode. We might attempt to
marshal the closure code using the same strategy as that employed during
the second phase. However, upon unmarshalling in a second runtime, these
getglobal instructions would most probably point to the incorrect modules
in the new global block, leading to unpredictable behaviour. The execution
environment of f would have changed.

module M1 : sig val x:int end = struct let x = 17 end
mark "MK"
module M2 : sig val y:int end = struct let y = 42 end

let £ () = Ml.x + M2.y in
let s = marshal "MK" f in
I0.send s

The correct approach to this problem, consistent with the semantics
of Acute, is to either rebind such references to the new module locations at
unmarshal time, or else marshal the referenced modules along with the value.
In the case of £, we rebind the reference to M1.x because the containing
module occurs prior to the marshal mark MK. In contrast, we marshal module
M2 along with £ because this second module is located after the mark.

Upon unmarshalling the byte-string, we must now dynamically allocate
the marshalled module M2. In most cases, the position of this module in the
new global data block will have changed from its original location. During
the unmarshalling of £, we therefore scan the closure code, patching the
getglobal references to M1 and M2.

module M1 : sig val x:int end = struct let x = 17 end
let s = I0.receive () in
let f = unmarshal s as (unit -> int) in

f 0

Conveniently, the O’Caml virtual machine already performs redex-time
instantiation of module fields: module references that are contained within a
closure are only actually evaluated during an application. This considerably
simplifies the implementation of rebinding.
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3.15 Marshalling

We extend the marshalling algorithm outlined in Part II. Closure code may
now reference arbitrary modules. We first outline the algorithm used to
calculate module reachability, before addressing the issues of module mar-
shalling and relocation.

The interface to the marshalling primitives remain unchanged. However,
our marshal string now additionally contains the marshal mark, a relocation
table reloc and marshalled module definitions mod;.

type | mark reloc mody e mod,,_1 value

3.15.1 Initialisation

The compiler of Part I generates bytecode executables that are devoid of
the original Acute mark/module structure. However, such structure is nec-
essary in order for the marshalling primitives to be able to determine the
relative positions of modules with respect to marshal marks. Furthermore,
this information must be dynamically updated as additional modules are
unmarshalled.

We know at compile-time which modules and marks will initially be
present. This information must be passed to the runtime when the bytecode
is executed. We therefore extend abc to output initialisation code. The
code reconstructs the compile-time mark /module structure as a linked-list of
blocks, with each module name mapping to a field position (global number)
in the global block. We invoke an initialisation primitive with the block
structure. This primitive constructs an in-memory definitions table for use
by the marshalling primitives.

Returning to our example code, we shall assume that modules M1 and
M2 are located at global numbers 17 and 18 respectively. The initialisation
code therefore constructs the following definitions table at runtime:

module M1 at offset 17
mark MK
module M2 at offset 18

3.15.2 Module reachability

When marshalling a closure value it is necessary to determine the referenced
modules. Although this information is not explicitly contained within our
program, we can again perform an abstract interpretation of the reachable
bytecode to determine such module reachability.

In outline, our algorithm iterates over each instruction that is reachable
from the code pointer. If we encounter a getglobal instruction, then we
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add the referenced global number to the list of reachable modules. We then
retrieve the module block from the runtime and recursively iterate over the
code that is reachable from each of the module field values. Again, unde-
cidability prevents us from obtaining accurate runtime module reachability
information. We therefore assume that all reachable getglobal instruc-
tions are executed. This gives us a safe approximation. The core algorithm
is outlined in 3.14.

Note that module reachability progresses through static code and run-
time module values. We give a formal definition of module reachability
in Appendix E. We recommend that this section is consulted for a more
detailed account of this complex operation.

Modules M1 and M2 are reachable from the closure code of our example
function f.

3.15.3 Relocation table

We construct a relocation table for the reachable modules. This is used
during the unmarshalling process to adjust module references. We create
this table by pruning the entries for unreachable modules from the definitions
table. Additionally, we omit those marks which occur prior to the marshal
mark. We encode the resulting table and copy it into the marshal string.

The relocation table for our example function f is identical to the defini-
tions table; M1 and M2 are both reachable from the closure code correspond-
ing to f.

3.15.4 Module encoding

Once we have calculated the set of reachable modules, we use the definitions
table to partition these modules with respect to the given marshal mark.
We only marshal those modules that occur after the mark.

We marshal a module by iterating over each field, applying the standard
value marshalling algorithm; each module field is either of an immediate or
closure kind.

Only M2 is marshalled along with our example function £. M1 occurs prior
to the marshal mark MK and therefore will be rebound upon unmarshalling.

3.16 Unmarshalling

During the unmarshalling of a value, we first decode the relocation table. We
then dynamically allocate the included modules. We use the relocation table
and marshal mark to patch any global numbers in the unmarshalled module
and value code. This ensures that they correctly reference any modules in
the new runtime, hence correctly restoring the execution environment.
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(module set) mod reach (code *cp)

{

module set ms = {};

// iterate over each closure instruction
for (; *cp != Return; cp++)
switch (*cp)
// closure construction
case Closure(_, cp’):
ms = mod_reach(cp’) U ms;
break;

// module access

case Getglobal(n):
// add n to reachable modules
ms = {n} U ms;

// retrieve runtime module definition
mod_def m = get_global(n);

// iterate over each field value
foreach (field f in m)
{
// calculate reachability
if (closure(f))
{
ms = mod_reach(code(f)) U ms;
}
}
break;
}
}

// reachable modules
return ms;

}

Figure 3.14: Pseudo-code for calculating module reachability
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3.16.1 Relocation table

The relocation table is decoded and stored within a temporary data struc-
ture. We reference this data during code patching.

3.16.2 Code patching

We patch the unmarshalled code to reference the correct modules by iter-
ating over each reachable instruction. Upon locating a getglobal n in-
struction we consult the relocation table to map to the module name. This
enables us to locate the correspondingly named module in the current run-
time, and hence map to the new module number n’. We patch n to n’.

3.16.3 Modules

Each module definition is sequentially extracted from the marshal string.
The module fields are stored within a newly-allocated block. This block is
then stored within the next free field in the global block. Although this
may require increasing the size of the global block, the virtual machine API
provides an unpublished function for this purpose.

Each of the newly-allocated module fields may be of a closure or imme-
diate kind. In the case of a closure kind, the reachable code is patched.

The new module definition must now be entered into the current run-
time’s definitions table. We extract the module name from the relocation
table, and store the name and new global number as the last entry in the def-
initions table. Additionally, we add any marshalled marks that immediately
follow this definition.

Returning to our example, we shall assume that M1 has a global number
of 42 and that the next free location in the global data block is 43. After
unmarshalling M2 we obtain the following definitions table:

module M1 at offset 42
module M2 at offset 43

3.16.4 Closure values

A closure value is unmarshalled as before, with the additional requirement
that all reachable bytecode must be patched. This correctly restores the
execution environment.

The result of patching our newly unmarshalled closure is that M1.x is
rebound to the existing module M1. Reference M2.y is updated to point to
the new location of the unmarshalled module M2.
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Chapter 4

Evaluation

4.1 Overview

In this section we examine both the project process as well as validating
the requirements in relation to the delivered software. Additionally, we
demonstrate the use of automated regression testing for the rapid evaluation
of software functionality. We then analyse the performance benefits offered
by compiling the Acute language into O’Caml bytecode. Finally, we explore
a more ambitious example to demonstrate that the implemented compiler
and runtime extensions support a relatively expressive fragment of Acute.

4.2 Code analysis

A total of 5250 lines of code were produced. We give a brief summary in
the following table:

Language Purpose Lines of code
Fresh O’Caml | Bytecode compiler 2700

C Marshalling primitives | 1200

Acute Test cases 900

Make Makefiles 200

Perl Test utility 100

Shell script Benchmark framework | 100

Gnuplot script | Benchmark graphs 50

4.3 Scheduling
A large amount of detailed planning and design occurred during the first

phase of this project. This permitted the planned schedule to be followed
for the entirety of the implementation phase of the project. Furthermore, the
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Christmas vacation ‘buffer time’ was used to begin the dissertation writeup
and bring forward the implementation of the module extensions.

4.4 Validation of requirements

The implemented software satisfied all of the original requirements. The
compiler was capable of accepting the complete Acute fragment given in
Figure 2.1, including recursive functions and simple modules. This greatly
exceeded the marshalling-enabled lambda calculus fragment that was re-
quired by the acceptance criterion. The emitted object files were success-
fully linked by ocamlc. They could then be executed by the customised
O’Caml virtual machine. This permitted the dynamic transfer of function
code between runtimes.

The agreement between the operational semantics of the original Acute
language and the interpreted bytecode was experimentally verified for the
shaded grammar of Figure 2.1. However, there were some subtle differences
in the semantics for rebinding. Specifically, we chose to ignore all module
versioning information; the Acute semantics specify that rebinding can only
occur to identical modules by default. Furthermore, we rebound references
to a module field at unmarshal time instead of at instantiation time. Re-
binding at instantiation time would require further extensions to the virtual
machine to introduce a level of indirection for module field accesses.

An additional complication arose from marshalled bytecode containing
references to external resources. Whilst we correctly handled modules, it is
also possible for bytecode to access block-allocated string constants. We de-
tected these rare occurrences during the calculation of code reachability and
raised an error. Although we could have extended the primitives to correctly
handle such references had time permitted, arbitrary O’Caml bytecode may
also access other block-allocated constants as well as C functions. We be-
lieve that it would be easier to marshal such code if relocation information
was retained at runtime.

Although these differences are appreciable, we have nonetheless achieved
our goal of demonstrating a feasible low-level implementation of the mar-
shalling primitives. Furthermore, the performance of the emitted bytecode
files and modified runtime was comparable to that of ocamlc produced code
running on the unmodified O’Caml virtual machine. We explore this area
in a subsequent section.

4.5 Testing
Throughout the course of the compiler implementation, each stage of the

compiler was tested as early and completely as possible. The rapid feedback
offered by the spiral development process was a great advantage; by the
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time that the last compiler module was implemented, we were confident
that all of the basic language features were supported. This allowed a quick
progression to the implementation of the more ambitious features.

The main source of complexity during the project was the implemen-
tation of the syntax tree manipulations and the marshalling primitives. In
order to test the translations, a set of comprehensive test cases were im-
plemented for each syntactic component of the supported Acute source lan-
guage. Combined with the pretty-printing facilities, this permitted each
module to be tested as it was added into the compiler pipeline. Note that
we had originally anticipated building a test harness and a set of unique test
cases for each stage. However, this approach would have been prohibitively
difficult given the narrow time-frame.

A comprehensive debugging output was added to the marshalling prim-
itives in order to help locate errors. Information such as the expected and
actual unmarshal type was printed, along with the details of the value kinds
encountered during parsing to and from the byte-string.

4.5.1 Automated regression testing

Once program input and output was supported, the existing test system was
extended to perform automated regression testing. Although this system
was only implemented during January, it was at this stage that the more
advanced features of Acute were being explored. The near-instantaneous
feedback offered by this system was extremely valuable.

The testing was performed by a Perl script that iterated through each
of the Acute source files in the test directory. Each Acute file had a header
comment that was first parsed. The script then compiled and executed the
source file. The comment contained the following optional fields:

GRP Specified the test case group membership. Individual groups could be
tested.

DOC Specified a simple description of the test to be printed onto the console
during execution.

RET Specified the expected stdout return value when the file was executed.
Although this value was untyped (a simple string comparison was
performed), this did not become a limitation during testing.

In the example in Figure 4.1, we define the successor function, and then
print out the result of applying it to the value 42. The RET value in the
header specifies that the expected (textual) output value is 43.

When all features were implemented, there were a total of fifty five tests,
systematically covering all of the implemented language features. A common
test idiom for the marshalling primitives was to use two sub-tests. The first
test marshalled a value to the persistent store, whilst the second retrieved
and unmarshalled it. The separate runtime instances ensured independence
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(€1

* GRP lambda
* DOC simple lambda
* RET 43

*)

let f = function x > x + 1
in I0.print_int (f 42)

Figure 4.1: A test case for the successor function

let rec fib n =
if n <= 2 then 1
else (fib (n-1)) + (fib (n-2))

Figure 4.2: Naive Fibonacci function

between the marshalling operations.

4.6 Performance

One of the main motivations for this project was to explore the perfor-
mance benefits obtained by compiling the Acute intermediate language into
O’Caml bytecode. In order to evaluate the performance of the bytecode, we
benchmarked the execution time of the naive Fibonacci function and Acker-
mann’s function. The benchmark configurations are listed below. We use a
constant value of 3 for the first parameter of Ackermann’s function in order
to obtain exponential time complexity. It must be noted that the bench-
marks only provide a very general indication of the relative performances of

the configurations.

acute-bc
acute-ntv
abc
ocaml-bc
ocaml-ntv

Acute intermediate language, bytecode interpreted runtime
Acute intermediate language, native runtime

abc generated bytecode, modified O’Caml virtual machine
ocamlc generated bytecode, O’Caml virtual machine
ocamlopt generated native code

The benchmarks were performed on an unloaded 1GHz dual Pentium
III running PWF Linux. Each benchmark invoked the Unix gettimeofday
function before and after running the test function, printing the epoch time
value to stdout. A wrapper module was created to enable the Acute code
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let rec ack m n =
if m =0 thenn + 1
else if n = O then ack (m-1) 1
else ack (m-1) (ack m (n-1))

Figure 4.3: Ackermann’s function

to access the system time information. Although the wrapper module in-
creased the complexity of the testing (over using the Bash time command,
for example), the benefit was that we could time the benchmarked function
more precisely; our timing information did not include the runtime startup
time.

A small set of shell scripts were created to automate the benchmarking
process. Each benchmark source file was initially preprocessed in order to
substitute in the correct value for the formal parameter n of the function.
The file was then compiled before being executed three times with the re-
sulting timing values recorded to a log file. A final script then invoked the
Gnuplot program to create a graph of the benchmark results. Although
this infrastructure took several hours to implement, the benefit was that
the benchmarks could be rapidly and repeatedly run, with parameters ad-
justed as necessary. Removing the need for user intervention reduced the
risk of any error occurring in the processing of the considerable amount of
test data.

4.6.1 Analysis of results

The graphs are both of exponential time-complexity algorithms (as a func-
tion of the input argument value n). We therefore fit a regression function
of the form t = a™*? to the timing data, where a and b are constants deter-
mined by the regression algorithm. The results are plotted on a logarithmic
scale. We see that the gradients of the resulting functions are very similar,
especially for the Fibonacci function where we have a greater number of
data points. The horizontal displacements indicate that there is a constant
factor difference between the execution times t. The ratios of the execution
times for the functions are tabulated in Figure 4.6. We are unsure why the
relative timings decrease for the Fibonacci function, although the results of
such micro-benchmarks are clearly highly dependent upon the specifics of
architecture implementations.

In both cases, we see that the native O’Caml code has the fastest exe-
cution time. The interpreted O’Caml bytecode is approximately an order
of magnitude slower, with the abc generated bytecode again two to three
times slower. The Acute bytecode runtime is between four and five orders
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Figure 4.5: Fibonacci function benchmark results

Function O’Caml O’Caml abc Acute Acute
native bytecode native  bytecode

Ackermann | 1 41 110 27000 100000

Fibonacci 1 15 28 4800 21000

Figure 4.6: Relative execution speeds
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of magnitude slower than the O’Caml native code. We see that the Acute
native runtime adds approximately an order of magnitude speed increase.

The speed decrease between the ocamlc and abc bytecode can be at-
tributed to the disabling of the ‘threaded code’ optimisation in the modified
runtime, as well the lack of bytecode optimisations performed by abc. For
example, abc performs no tail call elimination for tail recursive functions.
Furthermore, each closure only accepts a single argument; this leads to a
greater number of nested closure invocations for curried functions.

These benchmarks demonstrate that we have achieved comparable ex-
ecution speed to ocamlc generated bytecode. Most importantly, we have
increased the execution speed of Acute by three to four orders of magni-
tude. This is a considerable achievement.

We would have liked to explore the differences in runtime space efficiency
between the different compilation methods. However, although the O’Caml
virtual machine possesses a garbage collector interface, it would be relatively
difficult to obtain meaningful results throughout the course of computation.

4.7 Exploring a larger example

Although the regression tests demonstrated that the Acute bytecode com-
piler was largely bug-free, we were keen to explore the feasibility of program-
ming a larger, distributed example using the available features of Acute. The
chosen example consisted of a graphical worm that eternally crawled between
two windows, with the worm function being marshalled over TCP /TP when-
ever the screen figure reached the edge of its current window. A screen-shot
of the one of the windows is shown in Figure 4.7. The white background
has been shaded to aid viewing.

The worm code consisted of a single function that drew the image of
the worm at the specified screen coordinates. The worm code was always
marshalled with respect to a mark just above itself. This ensured that
we cut the bindings to the graphics libraries, hence marshalling a minimal
amount of code. We give the source code in Figure 4.8. The window code
is contained in Appendix A.

Despite the non-trivial functionality, the complete example was pro-
grammed in fewer than one hundred lines of Acute code. Subjectively, this
example was very easy to implement. However, it would have been useful to
increase the number of primitive types supported by the language to include
tuples and lists.

This example demonstrates that abc was capable of correctly compiling
non-trivial code. Furthermore, the virtual machine extensions permitted the
efficient runtime transfer of bytecode. The performance of the generated
bytecode and runtime system was greatly improved over the original Acute
runtime. In fact, a delay loop had to be added between each iteration to
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Figure 4.7: Screen-shot of the worm in action

prevent the humble worm from crawling too fast.

We see the true success of this project when we look back at the original
starting point. We have brought powerful code marshalling facilities to
the O’Caml virtual machine. Combined with high-level network access,
these features begin to hint at the directions in which functional language
development may progress to support distributed programming.
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includesource "util.ac"
mark "MK"

(* worm function *)

let worm ¢ x y =
(* initialise *)
Graphics.set_color c;
Graphics.set_line_width 2;
(* head *)
Graphics.moveto x y;
Graphics.lineto x (y-10);
Graphics.lineto (x-8) (y-10);
Graphics.lineto (x-8) y;
Graphics.lineto x y;
(* mouth *)
Graphics.moveto x (y-7);
Graphics.lineto (x-4) (y-7);
Graphics.lineto (x-4) (y-6);
(x eye *)
Graphics.plot (x-3) (y-2);
(* tail *)
Graphics.moveto (x-8) (y-8);
Graphics.lineto (x-22) (y-8);
Graphics.lineto (x-22) (y-6);
(* return next coordinate to plot worm *)
Pair.pair (x+1) y in

(* bootstrap by marshalling worm and coordinates *
* to one of the windows *)
Tcp.init 6668;
Tcp.send "127.0.0.1" 6666 (marshal "MK" worm) ;
Tcp.send "127.0.0.1" 6666 (marshal "MK" (Pair.pair O 200))

Figure 4.8: Worm code
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Chapter 5

Conclusions

We have exceeded our ambitious expectations ventured in the original project
proposal. The standard compilation techniques facilitated the rapid design
and implementation of a moderately efficient bytecode compiler. The initial
grammar was quickly expanded to support a rather expressive fragment of
the Acute language. The virtual machine extensions permitted the mar-
shalling and rebinding of values, including those of function types — this is a
significant improvement upon the standard O’Caml functionality. Further-
more, the emitted bytecode was shown to have a comparable performance
to that generated by O’Caml. Throughout the implementation phase of the
project, automated regression testing was used to great effect.

During the course of the project, the author gained a deep understanding
of the O’Caml and Acute languages as well as the design and operation of the
O’Caml virtual machine. Additionally, much was learnt about type theory,
operational semantics and compiler design.

This project has demonstrated the feasibility of adding high-level mar-
shalling facilities into production quality languages. Combined with rebind-
ing, these primitives increase the control given to the designers of distributed
systems. Furthermore, the clear semantic model facilitates reasoning about
system properties.

Much research remains to be done in the area of marshalling and rebind-
ing. From a language design point of view, the linear module structure of
Acute is overly restrictive. In general, we could maintain sets of modules or
use hierarchical module structures.

This project has taught us that manually scanning and patching byte-
code is a rather complex operation. With regards to O’Caml bytecode, we
could assist marshalling by retaining object file relocation information at
runtime. More generally, we might compile to a more high-level bytecode
format, maintaining explicit blocks of labelled closure code. For increased
robustness, we could also include typing information. However, there are
tradeoffs to be made with execution performance.
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It is clear that distributed computation will remain a hard problem for
some time. Servers will continue to crash and network connections will still
fail. Yet perhaps we might begin to start understanding some of the systems
that we build.
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Appendix A

Example Code

In this section we present the Acute source code used for the window in the
worm example.

includesource "util.ac"
mark "MK"

module Board :
sig
val init : unit -> unit
val sleep : int -> unit
val iter : (int -> int -> int -> ((int -> int -> int) -> int))
-> int -> int -> unit
end =
struct
let init x
Graphics.open_graph " 300x300+250-250";
Graphics.set_window title "Window 127.0.0.1:6666";
Graphics.auto_synchronize false

(* fibonacci function to take some cycles... *)
let sleep n =
let rec fib x =
if x = 1 then 1
else if x = 2 then 1
else (fib (x-1)) + (fib (x-2))
in (fun x -> ()) (fib n)

(* walk worm across board, marshalling when done *)
let iter w x y =
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let rec it wx y _ =
if x = Graphics.sizex () + 24 then
(* marshal *)
let addr "127.0.0.1" in
let port = 6667 in
(Tcp.send addr port (marshal "MK" w);
Tcp.send addr port (marshal "MK" (Pair.pair (0) y));
Graphics.clear _graph();
Graphics.synchronize ())

else
(* walk worm *)
let _ = w (Graphics.white () (x-1) (y)
in let p = w (Graphics.black ()) x y
in let _ = Graphics.synchronize ()
in let x’ = Pair.fst p
in let y’ = Pair.snd p

in it w x’ y’ (sleep 20)
initwxy O
end

(* initialisation *)
let _ = Board.init ();
Tcp.init 6666

in let rec go _ =

(* block waiting to receive worm *)
let worm = unmarshal (Tcp.recv ())

as (int -> (int -> (int -> ((int -> (int -> int)) -> int)))) in
(* ... and starting co-ordinates *)
let p = unmarshal (Tcp.recv ())

as ((int -> (int -> int)) -> int) in
(* deconstruct co-ordinates *)
let x = Pair.fst p in
let y = Pair.snd p in
(* abuse cbv semantics *)
go (Board.iter worm x y)

in go ()
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Appendix B

Typing Rules

This section gives the typing rules for the simply-typed lambda calculus
intermediate language used within abc. These rules are heavily based upon
those found in the Acute Technical Report [13].

The typing relation use two different kinds of environments: E maps
module identifiers to signatures whilst I' maps local identifiers to values.
Where I' is omitted we implicitly assume that this environment is empty.

B.1 Definitions

E + empty : ok

E F defs : ok
E + mark MK defs : ok

E + module My, : Sig = Str : My : Sig
E,Mj; : Sig F defs : ok
E + module My, : Sig = Str defs : ok

B.2 Modules

E + Str : Sig
E F module My, : Sig = Str : My, : Sig

B.3 Signatures

E, I' - empty : empty

E I'x:T F str : sig E,T'E v T
E, T" - letx, = vstr : valx, : T sig
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E, {} F str: sig
E F struct str end : sig sig end

B.4 Expressions

x € dom(I") INz) =T
EI' x0T

Co : T
E.TF Coe : T

op" - T1 —...—»T,—T E, T F e T jel...n
E,T' - op"ei...e, : T

E,T,e:TFe:T
E,T'F fun (z:7T) - e : T — T’

T1%T2—>T3 E,F,fiTl,.TITQI_GITg
E, ' - funrec (f:Th), (x:T2) — e : To — T3

E,T Fe : T — T ET Fe T
E,Fl—eleQ:T'

E,I" - e : bool E T Fe : T E.T' ke : T
E,I' - ife; thenegelseeg : T

E, T I e : string ET'F e : T

E, I' - marshal e; ey : string

E, ' - e : string
E, ' - unmarshaleasT : T

Mjs € dom(FE) EMjs) = sig sig val x, : T sig’end
E. T F Myx: T
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Appendix C

Wire Format

This section specifies the full syntax of the wire format for marshalled values.
Variable sized fields are prefixed by their byte length. This permits the
encoding of arbitrary binary data.

Non-terminal symbols are italicised, whilst terminals are given in tele-
type font. Optional components are encased in curly parentheses {...}. We
define the terminal alphabet ¥ to be the set of byte values.

C.1 Integer literal

We define an integer literal int to be a signed, four-byte value.

int € o4

C.2 Identifier

We define an identifier ident to be a length prefix n, followed by a string of
n binary characters.

ident e {s€ X" |ne€int N s=nsi...sp}

C.3 Marshal value
A marshal value contains a type string, the mark with which the value was
marshalled with respect to, a relocation table, zero or more module defini-

tions and the value itself.

marsh-val ::= type mark reloc {module} value
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C.4 Type string

The type corresponds to the pretty-printed string of the value type.
type ::= ident

C.5 DMark

The mark corresponds to the string value of the mark with which the value
has been marshalled with respect to.

mark := ident

C.6 Relocation table

A relocation table reloc consists of a length prefix n, followed by the n re-
location definitions reloc-def. Each of these entries is either a mark or a
module definition. Semantically, the value global-num corresponds to the
offset position of a module in the O’Caml global data block.

reloc € {s € ¥* | n € int N s=nreloc-def ... reloc-def,}

reloc-def = reloc-mark | reloc-mod
reloc-mark = 0 ident
reloc-mod ::= 1 ident global-num

global-num = int

C.7 Module definition

A module definition module consists of a length prefix n, followed by n fields
mod-field.

module € {s € ¥* | n € int N s =nmod-field, ...mod-field,}

mod-field = walue

C.8 Value

A value may either be an immediate value val-immed or a closure value
val-clos.

value ::= val-immed | val-clos
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C.8.1 Immediate value

An immediate value val-immed is prefixed by the character 0 and then fol-
lowed by an integer literal corresponding to the encoded value.

val-tmmed ::= 0 int

C.8.2 Closure value

A closure value wval-clos is prefixed by the character 1 and then followed by
the environment env and code code.

val-clos ::= 1 env code

Environment

The environment env consists of a length prefix n, followed by n environ-
ment fields env-val.

env €{s € X" | ne€int A s=mnenv-valy...env-val,}
env-val ::= value

Code

The code part of the closure code consists of a length prefix n and a code off-
set m, followed by the binary code consisting of n four-byte values code-val.
The code offset specifies which instruction the closure code pointer should
reference within the block of code.

code € {s€X*|n,meint Am<nAs=nmcode-valy ... code-val, }

code-val ::= int
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Appendix D

Code Reachability

The following section defines a reachability relation for closure code. We use
this definition during the marshalling of function values between runtimes.

For the analysis we assume that we are marshalling the high-level, la-
belled bytecode. However, the demonstrated technique readily applies to ac-
tual O’Caml bytecode instructions, although the relative references within
the code cause the notation to become more complex. Additionally, we
do not consider reachability over mutually recursive code blocks; such con-
structs are not present in abc generated bytecode.

D.1 Closure code

Let the code of a program at a given point in execution consist of a labelled
sequence of instructions

msi

nsy,
A closure block ¢ consists of a labelled sequence of instructions

C: NSy

nSq

These instructions are delimited by the initial, labelled closure instruction
and a final return instruction. More formally, these instructions satisfy the
conditions

Qs
IN 1V
3
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insy = return 1

D.2 Code reachability relation

Let C be the set of all such closures within the program code. Define the
code reachability relation r. over C' x C' as follows.

The closure block pair (¢,c¢') € C x C is in r. if and only if ¢
contains an instruction of one of the forms

/
closure _, ¢

/
closurerec _, _, ¢

We can visualise the relation r. as a directed graph. We suspect that any
such graph is acyclic for the supported fragment of Acute, although it is
beyond the scope of this dissertation to attempt to prove this proposition.

D.3 Code reachability for runtime values

In order to marshal a value v, we must also marshal the reachable code that
may be invoked from v. For this definition we require the transitive closure
of 7., which we denote by 7.. If v is an immediate kind then no code is
referenced. However, if v is a closure value, then code reachability proceeds
through the immediately referenced code block as well as the field values.

/ o _ A
code-reach (v) = {ctu{d eClecr. d}UU,, code-reach (v;) T
0 i

1 if v is a closure value with code block ¢ and environment fields vy ... v,

T otherwise

Note that we use a conservative, static approximation to the runtime code
reachability. We assume that any closure instantiation instruction is exe-
cuted. However, our approximation is certainly safe; it returns a superset
of the code that will actually be invoked in any given execution run.
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D.4 Implementation

We simply the marshalling implementation by transferring a single, con-
tiguous block of instructions which contains all of the code blocks that are
reachable from the value v.

ms yi

nSg

This block of instructions satisfies the properties

ins; = min ins; € U code-reach (v)
3

NS = Max ins; € U code-reach (v)
(]

Note that when we unmarshal code we allocate it on the C heap, and there-
fore it is unlikely to lie adjacent to those initial instructions loaded from
an executable bytecode file. However, we suspect that such sets of closures
are partitioned under r/, and hence will never be simultaneously marshalled.
This leads us to believe that the above implementation is valid.
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Appendix E

Module Reachability

The following section defines a reachability relation for runtime module defi-
nitions. This relation is used when marshalling function values that reference
modules.

E.1 Runtime module definition

For the analysis, we assume that modules are named. Consider a runtime
module definition m € M to be a set of values

{v1,...,0n}

E.2 Module reachability relation

Let M be the set of all modules definitions present within the runtime at a
given point in execution. The set of module definitions that are immediately
reachable from a value v is defined to be

immed-mod-reach (v) = {m' € M | getglobal m’ € U code-reach (v)}

The module reachability relation r,, over M x M now proceeds through the
fields of the modules as follows:

The module pair (m,m”) € M x M is in ry, if and only if

m" e{m' e M | m' € U immed-mod-reach (v;)}

viEM

We can visualise the relation r,, as a directed graph. This graph is acyclic
for Acute modules due to the linear module definition structure.
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E.3 Module reachability for runtime values

In order to marshal a value v, we must additionally marshal the set of
reachable modules, consisting of all of those module definitions that may be
accessed from v. For this definition we require the transitive closure of r,,,
which we denote by 77,. If v is an immediate kind then no modules are ref-
erenced. However, if v is a closure value, then module reachability proceeds
through the immediately referenced code block as well as the environment
field values.

immed-mod-reach (v) T
U{m’ € M | m € immed-mod-reach (v) N mr], m'}
UU,, mod-reach (v;)

{} ¥

1 if v is a closure value with code block ¢ and environment fields v; ... v,

mod-reach (v) =

T otherwise

In the case of rebinding, we only marshal those reachable modules that occur
after the marshal mark.
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Appendix F

O’Caml Bytecode
Instructions

This section gives a brief overview of the syntax and runtime behaviour
of some of the more interesting bytecode instructions. Note that many of
the instructions have specialised versions for small integer arguments. For
example, there is a specific instruction for constructing a closure with one
environment value.

An instruction consists of an initial 32-bit opcode, specifying the kind of
the instruction (e.g. integer multiplication), followed by zero or more 32-bit
arguments. Some instructions are of variable length. The actual opcode
values are not given in this reference, although they may be found in the
opcode.ml file in the standard O’Caml distribution.

All code offsets are signed values, and correspond to the distance in 32-
bit words between the bytecode location of offset value and the referenced
instruction.

F.1 Arithmetic operations

Arithmetic instructions typically consist of a single opcode. For example, an
integer multiplication is performed by the mulint instruction. The runtime
behaviour of this instruction is to destructively multiply the two argument
values from the accumulator and the top of the stack, placing the result in
the accumulator.

mulint

F.2 Block values

The instruction used to create a block value of kind k with n fields is given
below. The kind is an integer value. The n field values are taken from the
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accumulator and the top of the stack at runtime.

makeblock n, k

F.3 Closures

F.3.1 Construction

The bytecode for constructing a non-recursive closure with n environment
variables and function code at relative offset [ is given below. At runtime,
this instruction causes n values to be taken from the accumulator and the
top of the stack in order to construct the closure environment. A pointer to
the newly constructed closure block is then placed in the accumulator.

closure n, I

F.3.2 Application

The bytecode instruction used apply a closure to n arguments is given be-
low. The runtime behaviour of this instruction is to destructively apply the
closure reference contained in the accumulator to the n arguments residing
at the top of the stack. The return value of the closure is placed into the
accumulator. Note that this return value is also a closure if the original
closure has only been partially applied.

apply n

F.3.3 Environment access

The code for accessing environment value ¢ from within a closure is given
below. The runtime behaviour of this instruction is to place environment
value 7 into the accumulator.

envacc ¢

F.4 Recursive closures

F.4.1 Construction

A set of mutually recursive functions are represented by a single recursive
closure. The multiple sections of bytecode are accessed via code pointers
l1...l,. We also specify the environment size n.

closurerec m, n, Iy, ... Ly,
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F.4.2 Application

A recursive closure is applied to arguments using the apply instruction.
This causes the execution of the section of bytecode referenced from the
first code pointer ;. However, the closure code may place a reference to
the containing closure into the accumulator by using the offsetclosure
instruction. This permits recursive calls.

F.5 Global data

The getglobal instruction is used to access a field n of the O’Caml global
data block. Note that we symbolically reference offsets within this block
during compilation, delaying the calculation of actual positions until the
linking stage. There is also an analogous setglobal instruction for entering
the current accumulator block value into field n of the global data.

getglobal n

F.6 C Primitives

The ccall instruction is used to invoke a C primitive prim with n argu-
ments. At runtime, the primitive is passed n instructions from the accu-
mulator and the top of the stack. Note that the name prim is a symbolic;
at link time this label is converted into an integer value. The named C
primitive must be present at link time if static linking is being used.

ccall prim, n
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Project Proposal

In the following section we include a copy of the original project proposal.
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Introduction

Many increasingly complicated systems are being fielded in the area of dis-
tributed computation. The design of such systems has created many novel
challenges in the areas of development, deployment, execution and updates.
Systems are deployed across multiple administrative domains, often with the
requirement that multiple versions of programs can safely interact. Further-
more, the non-determinacy of distributed, parallel computation means that
detailed analysis of system properties is often exceedingly complex. Current
mainstream programming languages including ML, Java and C* provide few
facilities to address these problems.

Members of the Computer Laboratory Theory and Semantics Group
have recently designed and implemented a high-level, distributed program-
ming language called Acute[l], extending the O’Caml core. The language
attempts to address many of the problems encountered with distributed
computation. Facilities are provided for type-safe marshalling, as well as
dynamic linking and rebinding. Acute can also create globally meaningful
type names for abstract types, and enforce version constraints for rebind-
ing. These features permit distributed infrastructures to be built as simple
libraries.

Currently, a compiler for Acute has been written in Fresh O’Caml. This
outputs compiled code in an intermediate language form, which is essentially
the abstract syntax of Acute extended with closures. This intermediate lan-
guage is then executed on an interpreter. However, this runtime is relatively
inefficient, using pattern matching to perform reductions over the interme-
diate language.

The aim of this project is to implement a compiler for a small subset of
the Acute intermediate language, targeting O’Caml bytecode. It is hoped
that an appreciable performance gain will be seen when this bytecode is
executed on the O’Caml virtual machine.
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Technical Background

The Acute Language

“An Acute program consists roughly of a sequence of module definitions,
interspersed with marks, followed by running processes... Marks essentially
name the sequence of module definitions preceeding them. Marshal oper-
ations are each with respect to a mark; the modules below that mark are
shipped and references to modules above that mark are rebound”[1].

As an illustration, consider the following example, adapted from [1]. A
function is marshalled with respect to the mark MK. The reference to M1.x
occurs before the mark, and hence will be rebound, whilst the reference to
M2.y occurs after the mark and will therefore be marshalled. The marshalled
value is transferred to a second runtime using the I0.send function.

module M1: sig val x:int end = struct let x = 0 end
mark "MK"
module M2: sig val y:int end = struct let y = 1 end

I0.send (marshal "MK" (fun () -> (Ml.x, M2.y)))

The byte string is then unmarshalled in the second runtime. A run-
time check is required to ensure that the unmarshalled value is of type
unit->int*int.

module M1: sig val x:int end = struct let x = 0 end
module M2: sig val y:int end = struct let y = 1 end
(unmarshal (I0.receive()) as unit->int*int) ()

Acute permits a high level of control for rebinding, supporting version
numbers and wversion constraints. It is currently unclear whether the byte-
code compiler will support these features.

The O’Caml Virtual Machine

The O’Caml virtual machine is based upon a stack architecture[2]. The
stack contains the values for the bytecode operators. All values (for a given
architecture) are the same size. A value is either an integer or a block. A
block is a pointer to a data structure which also known as a block.

Blocks are dynamically allocated in memory, and consist of a header
followed by zero or more fields. The header specifies:

e The size of the block
e Garbage collection information

e Constructor information
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In O’Caml, functions are implemented as closures. The closure is allo-
cated as block. The first field of the block points to the bytecode of the
function, whilst the remainder of the fields correspond to the environment.

Marshalling Primitives

The project will require the implementation of marshal and unmarshal
primitives. These will be implemented in C and compiled to a shared library.
The standard O’Caml runtime system is able to dynamically load libraries
and resolve references to user-implemented primitives prior to running the
bytecode. The runtime also has a comprehensive API for the manipulation
of runtime data[3].

In order to marshal a value, the bytecode representation must be encoded
as a byte string. For an integer value, we can simply marshal the value on
the stack. However, for a block value, we must marshal the referenced block.
If this block is a closure, then we must also marshal the environment and
the function bytecode.

At unmarshal time, blocks must be dynamically allocated. If the un-
marshalled value is a closure then the references to the environment and
the function bytecode will need to be modified to reflect their new positions
in memory. There must also be a runtime type check. This suggests that
the marshalled values will need to be tagged with their type and transferred
along with a relocation table.

Should rebinding be implemented, then references from the marshalled
values to modules will have to be altered to point to the memory locations
of the existing modules.
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Project Description

The first stage of this project will be to conduct a requirements analysis for
the bytecode compiler. This will involve understanding the Acute language
specification. Particular attention will be given to the reduction semantics,
since these must be preserved in the bytecode translation. In addition, the
O’Caml bytecode specification must be understood.

Several resources are available for the O’Caml bytecode specification,
including online documentation and the O’Caml bytecode compiler source
code. It is also possible to directly output bytecode mnemonics from the
O’Caml bytecode compiler.

The next stage will be to design and implement a simple compiler for
a very restricted form of the Acute intermediate language. There will be
no need to write a parser for the intermediate language because the current
Acute compiler implementation contains a module to perform this function.
A light-weight testing framework will be concurrently developed. This re-
source should prove valuable when the more advanced features of Acute are
implemented.

The compiler will be able to support the following language types:

e integers
e lambda abstractions

e lambda applications

The compiler can then be extended to produce bytecode that can ref-
erence external libraries. Once implemented, this facility will be used to
link to the marshalling primitives. Additionally, it will hopefully permit the
existing network modules to used, hence permitting marshalled values to be
easily transferred between runtimes on different machines.

The next stage will be to implement the marshalling primitives. This
will require a concrete marshalling format to be chosen. Additional changes
may need to be made to the compiler in order for the runtime to retain
sufficient information to permit the testing of type equality for marshalled
values.

There is considerable scope for the extension of this project in the area
of module reference rebinding for marshalled values. This will require the
implementation of modules, although these can be considerably simplified
by forbidding module initialisation. It will also be necessary to implement a
facility to determine where a given module is located in relation to a specified
mark.
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Acceptance Criterion

The acceptance criterion will be the successful implementation of marshalling
for the following types:

e integers

e lambda abstractions

For a demonstration of a successful implementation, it is hoped that
the existing O’Caml network modules can be used to facilitate the transfer
of marshalled values between runtime systems. However, a more primitive
demonstration is possible, utilising the manual transfer of byte strings.
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Starting Point

Much of this area of Computer Science is new to me. The Acute language
specification is considerably more complex than anything covered in the
Part 1B Semantics of Programming Languages course, and contains type
theory that is not covered in the Part II Types course. Familiarisation with
the new concepts will take some time. Furthermore, I have no knowledge
of compilers beyond that presented in the Part 1B Compiler Construction
course.

This project will make considerable use of Fresh O’Caml. I have no
knowledge of ML beyond that which was taught in the Part 1A Foundations
of Computer Science course. Therefore part of the initial stages of the
project will involve studying the language, with particular emphasis on the
module and type systems.

The marshalling primitives will be implemented in C. I have an inter-
mediate knowledge of this language, having previously completed a sizeable
project in C++. Therefore I anticipate little difficulty for this part of the
implementation.

The parser module from the current Acute implementation will be used
to obtain the abstract syntax tree from the intermediate language. All other
code will be written by me.
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Resources and Backup

Development will be conducted on the Computing Service Personal Work-
station Facility under a GNU /Linux operating system. This system is fully
supported by the Computing Service, hence reducing the risk of project dis-
ruption due to a system failure. Additionally, the required GNU compiler
tool chain is already available on the PWF facilities. Therefore very little
software configuration will be required before development can commence.
The PWF facilities will primarily be accessed using the remote login facil-
ity from my own computer. However, any of the publicly accessible PWF
machines may also be used.

The Acute source code is hosted on a Computer Laboratory server. Dur-
ing both the design and implementation stages I will frequently need to refer
to this code. Additionally, I will need to make use of the Acute compiler
modules that parse the intermediate language. The easiest way to view
the authoritative version of the code will be by directly accessing the server.
This requires a Computer Laboratory account. However, if this is infeasible,
then it is possible to manually obtain a copy of the Acute source code.

Extra disc space may be required. Compiling Fresh O’Caml and Acute
requires approximately half of the available disc space. Therefore, as a
precaution against running out of disc space mid-way through the project,
I would like to increase the available disc space from 250MB to 500MB.

A version control system will be used to store project files, permitting
changes to be undone. Backups of the project files will be made to the
Pelican archive server once per day. This process shall be automated. Ad-
ditionally, weekly backups will be made to Compact Disc using my own
machine’s facilities.
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Project Plan

I plan to have a functioning implementation of marshalling complete rel-
atively soon (by mid-December), with the rest of the Christmas Vacation
serving as ‘buffer-time’. This allows me to spend the first half of Lent Term
implementing the proposed extensions to the project. The latter half of Lent
Term can then be used to write up my dissertation.

Date

Activity

Fri 22 Oct 2004

Proposal deadline

Fri 05 Nov 2004
Fri 12 Nov 2004

Understand Acute and O’Caml bytecode specifications
Requirements analysis complete
System design complete, including test harness

Fri 26 Nov 2004
Fri 03 Dec 2004

Compiler implementation complete for primitive language
End of Michaelmas full term

Implementation of facilities to link to external

libraries complete

Fri 17 Dec 2004

Implementation of marshalling primitives complete

Fri 14 Jan 2005
Tue 18 Jan 2005
Fri 21 Jan 2005

Start work on modules
Start of Lent full term
Start writing progress report

Fri 28 Jan 2005

Fri 04 Feb 2005

Module implementation complete
Progress report complete
Progress report deadline

Fri 11 Feb 2005
Fri 18 Feb 2005

Aim to have rebinding complete
Coding finished
Start writing dissertation

Fri 04 Mar 2005

Dissertation writing half-complete

Fri 18 Mar 2005

Fri 25 Mar 2005

End of Lent full term
First draught of dissertation complete
Submit draft dissertation to Dr Sewell

Fri 08 Apr 2005

Submit final dissertation to Dr Sewell

Tue 26 Apr 2005

Beginning of Faster full term
Submit dissertation

Fri 20 May 2005
Tue 07 Jun 2005
Thu 09 Jun 2005
Fri 17 Jun 2005
Mon 20 Jun 2005

Dissertation deadline
Written examinations start
Written examinations end
End of FEaster full term

Viva voca examinations
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